論文の概要: Cognitive Bias in High-Stakes Decision-Making with LLMs
- arxiv url: http://arxiv.org/abs/2403.00811v1
- Date: Sun, 25 Feb 2024 02:35:56 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-11 00:01:11.682888
- Title: Cognitive Bias in High-Stakes Decision-Making with LLMs
- Title(参考訳): LLMを用いた高精度意思決定における認知バイアス
- Authors: Jessica Echterhoff, Yao Liu, Abeer Alessa, Julian McAuley, Zexue He
- Abstract要約: 我々は,大規模言語モデル(LLM)における認知バイアスの発見,評価,緩和を目的としたフレームワークを開発する。
心理学と認知科学の先行研究に触発され、16,800のプロンプトを含むデータセットを開発し、異なる認知バイアスを評価する。
我々は,LSMを用いた新たな手法を提案する中で,様々なバイアス緩和策を検証した。
- 参考スコア(独自算出の注目度): 21.322551161016463
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Large language models (LLMs) offer significant potential as tools to support
an expanding range of decision-making tasks. However, given their training on
human (created) data, LLMs can inherit both societal biases against protected
groups, as well as be subject to cognitive bias. Such human-like bias can
impede fair and explainable decisions made with LLM assistance. Our work
introduces BiasBuster, a framework designed to uncover, evaluate, and mitigate
cognitive bias in LLMs, particularly in high-stakes decision-making tasks.
Inspired by prior research in psychology and cognitive sciences, we develop a
dataset containing 16,800 prompts to evaluate different cognitive biases (e.g.,
prompt-induced, sequential, inherent). We test various bias mitigation
strategies, amidst proposing a novel method using LLMs to debias their own
prompts. Our analysis provides a comprehensive picture on the presence and
effects of cognitive bias across different commercial and open-source models.
We demonstrate that our self-help debiasing effectively mitigate cognitive bias
without having to manually craft examples for each bias type.
- Abstract(参考訳): 大規模言語モデル(LLM)は、幅広い意思決定タスクをサポートするツールとして大きな可能性を秘めている。
しかしながら、人間の(作成された)データに対するトレーニングを考えると、LLMは保護されたグループに対する社会的バイアスと認知バイアスの両方を継承することができる。
このような人間的な偏見は、LCMの支援によってなされた公平で説明可能な決定を妨げかねない。
このフレームワークは、特に高い意思決定タスクにおいて、LLMにおける認知バイアスを発見し、評価し、緩和する。
心理学と認知科学の先行研究に着想を得て、16,800のプロンプトを含むデータセットを開発し、異なる認知バイアス(例えば、即効性、逐次性、内在性)を評価する。
我々は,LSMを用いた新たな手法を提案する中で,様々なバイアス緩和策を検証した。
我々の分析は、さまざまな商用およびオープンソースモデルにまたがる認知バイアスの存在と効果を包括的に分析する。
偏見の種類ごとに手作業で例を作らなくても、認知バイアスを効果的に軽減できることを実証する。
関連論文リスト
- Bias in Large Language Models: Origin, Evaluation, and Mitigation [4.606140332500086]
大規模言語モデル(LLM)は自然言語処理に革命をもたらしたが、バイアスへの感受性は大きな課題となっている。
本総説では, LLMの発端から現在の緩和戦略まで, バイアスの背景を概観する。
偏りのあるLLMの倫理的および法的含意について論じ、医療や刑事司法のような現実の応用における潜在的な害を強調した。
論文 参考訳(メタデータ) (2024-11-16T23:54:53Z) - Bias in the Mirror: Are LLMs opinions robust to their own adversarial attacks ? [22.0383367888756]
大規模言語モデル(LLM)は、トレーニングデータとアライメントプロセスからバイアスを受け継ぎ、微妙な方法で応答に影響を与える。
LLMの2つのインスタンスが自己議論を行う新しいアプローチを導入し、反対の視点でモデルの中立バージョンを説得する。
我々は、モデルがどのようにしっかりとバイアスを保ち、誤った情報を強化するか、有害な視点に移行するかを評価する。
論文 参考訳(メタデータ) (2024-10-17T13:06:02Z) - Cognitive Biases in Large Language Models for News Recommendation [68.90354828533535]
本稿では,認知バイアスが大規模言語モデル(LLM)に基づくニュースレコメンデータシステムに与える影響について検討する。
データ拡張、エンジニアリングと学習アルゴリズムの側面を通じて、これらのバイアスを軽減する戦略について議論する。
論文 参考訳(メタデータ) (2024-10-03T18:42:07Z) - Towards Implicit Bias Detection and Mitigation in Multi-Agent LLM Interactions [25.809599403713506]
大規模言語モデル(LLM)は、社会をシミュレートし、多様な社会的タスクを実行するために、多くの研究で採用されている。
LLMは、人為的なデータに曝されるため、社会的偏見に影響を受けやすい。
本研究では,多エージェントLDM相互作用における性バイアスの存在について検討し,これらのバイアスを軽減するための2つの方法を提案する。
論文 参考訳(メタデータ) (2024-10-03T15:28:05Z) - The African Woman is Rhythmic and Soulful: An Investigation of Implicit Biases in LLM Open-ended Text Generation [3.9945212716333063]
大規模言語モデル(LLM)による決定に影響を与えるため、暗黙のバイアスは重要である。
伝統的に、明示的なバイアステストや埋め込みベースの手法はバイアスを検出するために使用されるが、これらのアプローチはより微妙で暗黙的なバイアスの形式を見落としることができる。
提案手法は, 暗黙の偏見を明らかにするために, 即発的, 意思決定的タスクによる2つの新しい心理学的手法を導入している。
論文 参考訳(メタデータ) (2024-07-01T13:21:33Z) - Evaluating Implicit Bias in Large Language Models by Attacking From a Psychometric Perspective [66.34066553400108]
我々は,大規模言語モデルが特定のグループに対する暗黙の偏見を厳格に評価する。
我々は,4つの共通のバイアス型の評価データセットを構築した3つのアタックアプローチ,すなわちDguise,Deception,Teachingを提案する。
論文 参考訳(メタデータ) (2024-06-20T06:42:08Z) - Exploring Value Biases: How LLMs Deviate Towards the Ideal [57.99044181599786]
LLM(Large-Language-Models)は幅広いアプリケーションにデプロイされ、その応答は社会的影響を増大させる。
価値バイアスは、人間の研究結果と同様、異なるカテゴリにわたるLSMにおいて強いことが示される。
論文 参考訳(メタデータ) (2024-02-16T18:28:43Z) - Measuring Implicit Bias in Explicitly Unbiased Large Language Models [14.279977138893846]
大規模言語モデル(LLM)は明示的な社会的バイアステストに合格するが、それでも暗黙のバイアスを課す。
我々は、暗黙のバイアスを明らかにするプロンプトベースの方法であるLSM Implicit Biasと、意思決定タスクにおける微妙な差別を検出する戦略であるLSM Decision Biasの2つの新しいバイアス対策を導入する。
これらの指標を用いて,4つの社会カテゴリーにまたがる8つの価値整合モデルにおいて,社会における傾向を反映する広汎なステレオタイプバイアスが発見された。
論文 参考訳(メタデータ) (2024-02-06T15:59:23Z) - Self-Debiasing Large Language Models: Zero-Shot Recognition and
Reduction of Stereotypes [73.12947922129261]
ステレオタイピングを減らすために,大規模言語モデルのゼロショット機能を活用している。
自己嫌悪は、9つの異なる社会集団におけるステレオタイピングの度合いを著しく低下させることが示される。
この研究が、バイアス軽減のための他のゼロショット技術に関する調査をオープンにすることを願っている。
論文 参考訳(メタデータ) (2024-02-03T01:40:11Z) - Exploring the Jungle of Bias: Political Bias Attribution in Language Models via Dependency Analysis [86.49858739347412]
大規模言語モデル(LLM)は、これらのモデルにおけるバイアスの頻度とその緩和に関する激しい議論を引き起こしている。
本稿では,意思決定プロセスに寄与する属性の抽出と仲介を行うためのプロンプトベースの手法を提案する。
観察された異なる治療は、少なくとも部分的には、属性の相違とモデルの相違によるものであることが判明した。
論文 参考訳(メタデータ) (2023-11-15T00:02:25Z) - Do LLMs exhibit human-like response biases? A case study in survey
design [66.1850490474361]
大規模言語モデル(LLM)が人間の反応バイアスをどの程度反映しているかについて検討する。
アンケート調査では, LLMが人間のような応答バイアスを示すかどうかを評価するためのデータセットとフレームワークを設計した。
9つのモデルに対する総合的な評価は、一般のオープンかつ商用のLCMは、一般的に人間のような振る舞いを反映しないことを示している。
論文 参考訳(メタデータ) (2023-11-07T15:40:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。