CLLMs: Consistency Large Language Models
- URL: http://arxiv.org/abs/2403.00835v4
- Date: Thu, 13 Jun 2024 08:41:28 GMT
- Title: CLLMs: Consistency Large Language Models
- Authors: Siqi Kou, Lanxiang Hu, Zhezhi He, Zhijie Deng, Hao Zhang,
- Abstract summary: Jacobi decoding achieves little speedup compared to traditional autoregressive (AR) decoding.
We develop a new approach aimed at realizing fast convergence from any state to the fixed point on a Jacobi trajectory.
- Score: 18.17892007267927
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Parallel decoding methods such as Jacobi decoding show promise for more efficient LLM inference as it breaks the sequential nature of the LLM decoding process and transforms it into parallelizable computation. However, in practice, it achieves little speedup compared to traditional autoregressive (AR) decoding, primarily because Jacobi decoding seldom accurately predicts more than one token in a single fixed-point iteration step. To address this, we develop a new approach aimed at realizing fast convergence from any state to the fixed point on a Jacobi trajectory. This is accomplished by refining the target LLM to consistently predict the fixed point given any state as input. Extensive experiments demonstrate the effectiveness of our method, showing 2.4$\times$ to 3.4$\times$ improvements in generation speed while preserving generation quality across both domain-specific and open-domain benchmarks.
Related papers
- FIRP: Faster LLM inference via future intermediate representation prediction [54.897493351694195]
FIRP generates multiple tokens instead of one at each decoding step.
We conduct extensive experiments, showing a speedup ratio of 1.9x-3x in several models and datasets.
arXiv Detail & Related papers (2024-10-27T15:53:49Z) - Progressive Mixed-Precision Decoding for Efficient LLM Inference [49.05448842542558]
We introduce Progressive Mixed-Precision Decoding (PMPD) to address the memory-boundedness of decoding.
PMPD achieves 1.4$-$12.2$times$ speedup in matrix-vector multiplications over fp16 models.
Our approach delivers a throughput gain of 3.8$-$8.0$times$ over fp16 models and up to 1.54$times$ over uniform quantization approaches.
arXiv Detail & Related papers (2024-10-17T11:46:33Z) - COrAL: Order-Agnostic Language Modeling for Efficient Iterative Refinement [80.18490952057125]
Iterative refinement has emerged as an effective paradigm for enhancing the capabilities of large language models (LLMs) on complex tasks.
We propose Context-Wise Order-Agnostic Language Modeling (COrAL) to overcome these challenges.
Our approach models multiple token dependencies within manageable context windows, enabling the model to perform iterative refinement internally.
arXiv Detail & Related papers (2024-10-12T23:56:19Z) - Parallel Decoding via Hidden Transfer for Lossless Large Language Model Acceleration [54.897493351694195]
We propose a novel parallel decoding approach, namely textithidden transfer, which decodes multiple successive tokens simultaneously in a single forward pass.
In terms of acceleration metrics, we outperform all the single-model acceleration techniques, including Medusa and Self-Speculative decoding.
arXiv Detail & Related papers (2024-04-18T09:17:06Z) - SEED: Customize Large Language Models with Sample-Efficient Adaptation for Code Generation [35.88318116340547]
We propose a novel adaptation approach named SEED, which stands for Sample-Efficient adaptation with Error-Driven learning for code generation.
We show that SEED achieves superior performance with few training samples, showing an average relative improvement of 54.7% in Pass@1 on multiple code generation benchmarks.
arXiv Detail & Related papers (2024-02-29T16:09:02Z) - Chimera: A Lossless Decoding Method for Accelerating Large Language Models Inference by Fusing all Tokens [15.566726645722657]
We propose a novel framework specifically designed for speculative sampling.
Within this framework, we introduce a lightweight draft model that effectively utilizes previously generated tokens to predict subsequent words.
We demonstrate impressive results, achieving an average latency speedup ratio of 2.7x compared to the vanilla auto-regressive decoding approach.
arXiv Detail & Related papers (2024-02-24T08:10:39Z) - Generation Meets Verification: Accelerating Large Language Model Inference with Smart Parallel Auto-Correct Decoding [11.832919020149891]
This research aims to accelerate the inference speed of large language models (LLMs) with billions of parameters.
We propose textbfSmart textbfParallel textbfAuto-textbfCorrect dtextbfEcoding (SPACE)
arXiv Detail & Related papers (2024-02-19T03:39:10Z) - Fast Chain-of-Thought: A Glance of Future from Parallel Decoding Leads to Answers Faster [61.83949316226113]
FastCoT is a model-agnostic framework based on parallel decoding.
We show that FastCoT saves inference time by nearly 20% with only a negligible performance drop compared to the regular approach.
arXiv Detail & Related papers (2023-11-14T15:56:18Z) - SPEED: Speculative Pipelined Execution for Efficient Decoding [35.45955948053644]
We propose SPEED, which improves inference efficiency by speculatively executing multiple future tokens in parallel with the current token.
For Transformer decoders that employ parameter sharing, the memory operations for the tokens executing in parallel can be amortized.
We demonstrate the efficiency of our method in terms of latency reduction relative to model accuracy and demonstrate how speculation allows for training deeper decoders with parameter sharing with minimal runtime overhead.
arXiv Detail & Related papers (2023-10-18T16:07:01Z) - Inference with Reference: Lossless Acceleration of Large Language Models [97.04200102556551]
LLMA is an accelerator to speed up Large Language Model (LLM) inference with references.
It is motivated by the observation that there are abundant identical text spans between the decoding result by an LLM and the reference that is available in many real world scenarios.
arXiv Detail & Related papers (2023-04-10T09:55:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.