NeuraLUT: Hiding Neural Network Density in Boolean Synthesizable Functions
- URL: http://arxiv.org/abs/2403.00849v2
- Date: Wed, 3 Jul 2024 13:43:56 GMT
- Title: NeuraLUT: Hiding Neural Network Density in Boolean Synthesizable Functions
- Authors: Marta Andronic, George A. Constantinides,
- Abstract summary: Field-Programmable Gate Array (FPGA) accelerators have proven successful in handling latency- and resource-critical deep neural network (DNN) inference tasks.
We propose relaxing the boundaries of neurons and mapping entire sub-networks to a single LUT.
We validate our proposed method on a known latency-critical task, jet substructure tagging, and on the classical computer vision task, digit classification using MNIST.
- Score: 2.7086888205833968
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Field-Programmable Gate Array (FPGA) accelerators have proven successful in handling latency- and resource-critical deep neural network (DNN) inference tasks. Among the most computationally intensive operations in a neural network (NN) is the dot product between the feature and weight vectors. Thus, some previous FPGA acceleration works have proposed mapping neurons with quantized inputs and outputs directly to lookup tables (LUTs) for hardware implementation. In these works, the boundaries of the neurons coincide with the boundaries of the LUTs. We propose relaxing these boundaries and mapping entire sub-networks to a single LUT. As the sub-networks are absorbed within the LUT, the NN topology and precision within a partition do not affect the size of the lookup tables generated. Therefore, we utilize fully connected layers with floating-point precision inside each partition, which benefit from being universal function approximators, but with rigid sparsity and quantization enforced between partitions, where the NN topology becomes exposed to the circuit topology. Although cheap to implement, this approach can lead to very deep NNs, and so to tackle challenges like vanishing gradients, we also introduce skip connections inside the partitions. The resulting methodology can be seen as training DNNs with a specific FPGA hardware-inspired sparsity pattern that allows them to be mapped to much shallower circuit-level networks, thereby significantly improving latency. We validate our proposed method on a known latency-critical task, jet substructure tagging, and on the classical computer vision task, digit classification using MNIST. Our approach allows for greater function expressivity within the LUTs compared to existing work, leading to up to $4.3\times$ lower latency NNs for the same accuracy.
Related papers
- PolyLUT: Learning Piecewise Polynomials for Ultra-Low Latency FPGA
LUT-based Inference [3.1999570171901786]
We show that by using building blocks, we can achieve the same accuracy using fewer layers of soft logic than by using linear functions.
We demonstrate the effectiveness of this approach in three tasks: network intrusion detection, jet identification at the CERN Large Hadron Collider, and handwritten digit recognition using the MNIST dataset.
arXiv Detail & Related papers (2023-09-05T15:54:09Z) - Learning k-Level Structured Sparse Neural Networks Using Group Envelope Regularization [4.0554893636822]
We introduce a novel approach to deploy large-scale Deep Neural Networks on constrained resources.
The method speeds up inference time and aims to reduce memory demand and power consumption.
arXiv Detail & Related papers (2022-12-25T15:40:05Z) - Intelligence Processing Units Accelerate Neuromorphic Learning [52.952192990802345]
Spiking neural networks (SNNs) have achieved orders of magnitude improvement in terms of energy consumption and latency.
We present an IPU-optimized release of our custom SNN Python package, snnTorch.
arXiv Detail & Related papers (2022-11-19T15:44:08Z) - Deep Architecture Connectivity Matters for Its Convergence: A
Fine-Grained Analysis [94.64007376939735]
We theoretically characterize the impact of connectivity patterns on the convergence of deep neural networks (DNNs) under gradient descent training.
We show that by a simple filtration on "unpromising" connectivity patterns, we can trim down the number of models to evaluate.
arXiv Detail & Related papers (2022-05-11T17:43:54Z) - Comparative Analysis of Interval Reachability for Robust Implicit and
Feedforward Neural Networks [64.23331120621118]
We use interval reachability analysis to obtain robustness guarantees for implicit neural networks (INNs)
INNs are a class of implicit learning models that use implicit equations as layers.
We show that our approach performs at least as well as, and generally better than, applying state-of-the-art interval bound propagation methods to INNs.
arXiv Detail & Related papers (2022-04-01T03:31:27Z) - Logic Shrinkage: Learned FPGA Netlist Sparsity for Efficient Neural
Network Inference [3.2296078260106174]
We propose the learned optimization of such LUT-based topologies, resulting in higher-efficiency designs.
Existing implementations of this class of architecture require the manual specification of the number of inputs per LUT, K.
We propose logic shrinkage, a fine-grained netlist pruning methodology enabling K to be automatically learned for every LUT in a neural network targeted for FPGA inference.
arXiv Detail & Related papers (2021-12-04T14:23:24Z) - NullaNet Tiny: Ultra-low-latency DNN Inference Through Fixed-function
Combinational Logic [4.119948826527649]
Field-programmable gate array (FPGA)-based accelerators are gaining traction as a serious contender to replace graphics processing unit/central processing unit-based platforms.
This paper presents NullaNet Tiny, a framework for constructing resource and energy-efficient, ultra-low-latency FPGA-based neural network accelerators.
arXiv Detail & Related papers (2021-04-07T00:16:39Z) - Learning N:M Fine-grained Structured Sparse Neural Networks From Scratch [75.69506249886622]
Sparsity in Deep Neural Networks (DNNs) has been widely studied to compress and accelerate the models on resource-constrained environments.
In this paper, we are the first to study training from scratch an N:M fine-grained structured sparse network.
arXiv Detail & Related papers (2021-02-08T05:55:47Z) - Finite Versus Infinite Neural Networks: an Empirical Study [69.07049353209463]
kernel methods outperform fully-connected finite-width networks.
Centered and ensembled finite networks have reduced posterior variance.
Weight decay and the use of a large learning rate break the correspondence between finite and infinite networks.
arXiv Detail & Related papers (2020-07-31T01:57:47Z) - Binarized Graph Neural Network [65.20589262811677]
We develop a binarized graph neural network to learn the binary representations of the nodes with binary network parameters.
Our proposed method can be seamlessly integrated into the existing GNN-based embedding approaches.
Experiments indicate that the proposed binarized graph neural network, namely BGN, is orders of magnitude more efficient in terms of both time and space.
arXiv Detail & Related papers (2020-04-19T09:43:14Z) - LogicNets: Co-Designed Neural Networks and Circuits for
Extreme-Throughput Applications [6.9276012494882835]
We present a novel method for designing neural network topologies that directly map to a highly efficient FPGA implementation.
We show that the combination of sparsity and low-bit activation quantization results in high-speed circuits with small logic depth and low LUT cost.
arXiv Detail & Related papers (2020-04-06T22:15:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.