SparseLUT: Sparse Connectivity Optimization for Lookup Table-based Deep Neural Networks
- URL: http://arxiv.org/abs/2503.12829v1
- Date: Mon, 17 Mar 2025 05:21:54 GMT
- Title: SparseLUT: Sparse Connectivity Optimization for Lookup Table-based Deep Neural Networks
- Authors: Binglei Lou, Ruilin Wu, Philip Leong,
- Abstract summary: This paper introduces SparseLUT, a connectivity-centric training technique tailored for LUT-based deep neural networks (DNNs)<n> Experimental results show consistent accuracy improvements across benchmarks, including up to a 2.13% increase on MNIST.<n>This is done without any hardware overhead and achieves state-of-the-art results for LUT-based DNNs.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The deployment of deep neural networks (DNNs) on resource-constrained edge devices such as field-programmable gate arrays (FPGAs) requires a careful balance of latency, power, and resource usage while maintaining high accuracy. Existing Lookup Table (LUT)-based DNNs, including LogicNets, PolyLUT, PolyLUT-Add, and NeuraLUT, exploit native FPGA resources with random sparse connectivity. This paper introduces SparseLUT, a connectivity-centric training technique tailored for LUT-based DNNs. SparseLUT leverages a non-greedy training strategy that prioritizes the pruning of less significant connections and strategically regrows alternative ones, resulting in efficient convergence to the target sparsity. Experimental results show consistent accuracy improvements across benchmarks, including up to a 2.13\% increase on MNIST and a 0.94\% improvement for Jet Substructure Classification compared to random sparsity. This is done without any hardware overhead and achieves state-of-the-art results for LUT-based DNNs.
Related papers
- NeuraLUT-Assemble: Hardware-aware Assembling of Sub-Neural Networks for Efficient LUT Inference [2.7086888205833968]
Efficient neural networks (NNs) leveraging lookup tables (LUTs) have demonstrated significant potential for emerging AI applications.
Existing LUT-based designs suffer from accuracy degradation due to the large fan-in required by neurons being limited by the exponential scaling of LUT resources with input width.
We present NeuraLUT-Assemble, a novel framework that addresses these limitations by combining mixed-precision techniques with the assembly of larger neurons from smaller units.
arXiv Detail & Related papers (2025-04-01T09:52:38Z) - TreeLUT: An Efficient Alternative to Deep Neural Networks for Inference Acceleration Using Gradient Boosted Decision Trees [0.6906005491572401]
We present TreeLUT, an open-source tool for implementing gradient boosted decision trees (GBDTs) on FPGAs.<n>We show the effectiveness of TreeLUT using multiple datasets classification, commonly used to evaluate ultra-low area and latency.<n>Our results show that TreeLUT significantly improves hardware utilization, latency, and throughput at competitive accuracy compared to previous works.
arXiv Detail & Related papers (2025-01-02T19:38:07Z) - Unveiling the Power of Sparse Neural Networks for Feature Selection [60.50319755984697]
Sparse Neural Networks (SNNs) have emerged as powerful tools for efficient feature selection.
We show that SNNs trained with dynamic sparse training (DST) algorithms can achieve, on average, more than $50%$ memory and $55%$ FLOPs reduction.
Our findings show that feature selection with SNNs trained with DST algorithms can achieve, on average, more than $50%$ memory and $55%$ FLOPs reduction.
arXiv Detail & Related papers (2024-08-08T16:48:33Z) - PolyLUT-Add: FPGA-based LUT Inference with Wide Inputs [1.730979251211628]
This work introduces PolyLUT-Add, a technique that enhances neuron connectivity by combining $A$ PolyLUT sub-neurons via addition to improve accuracy.
We evaluate our implementation over the MNIST, Jet Substructure classification, and Network Intrusion Detection benchmark and found that for similar accuracy, PolyLUT-Add achieves a LUT reduction of $2.0-13.9times$ with a $1.2-1.6times$ decrease in latency.
arXiv Detail & Related papers (2024-06-07T13:00:57Z) - NeuraLUT: Hiding Neural Network Density in Boolean Synthesizable Functions [2.7086888205833968]
Field-Programmable Gate Array (FPGA) accelerators have proven successful in handling latency- and resource-critical deep neural network (DNN) inference tasks.
We propose relaxing the boundaries of neurons and mapping entire sub-networks to a single LUT.
We validate our proposed method on a known latency-critical task, jet substructure tagging, and on the classical computer vision task, digit classification using MNIST.
arXiv Detail & Related papers (2024-02-29T16:10:21Z) - T-GAE: Transferable Graph Autoencoder for Network Alignment [79.89704126746204]
T-GAE is a graph autoencoder framework that leverages transferability and stability of GNNs to achieve efficient network alignment without retraining.
Our experiments demonstrate that T-GAE outperforms the state-of-the-art optimization method and the best GNN approach by up to 38.7% and 50.8%, respectively.
arXiv Detail & Related papers (2023-10-05T02:58:29Z) - Intelligence Processing Units Accelerate Neuromorphic Learning [52.952192990802345]
Spiking neural networks (SNNs) have achieved orders of magnitude improvement in terms of energy consumption and latency.
We present an IPU-optimized release of our custom SNN Python package, snnTorch.
arXiv Detail & Related papers (2022-11-19T15:44:08Z) - Comparative Analysis of Interval Reachability for Robust Implicit and
Feedforward Neural Networks [64.23331120621118]
We use interval reachability analysis to obtain robustness guarantees for implicit neural networks (INNs)
INNs are a class of implicit learning models that use implicit equations as layers.
We show that our approach performs at least as well as, and generally better than, applying state-of-the-art interval bound propagation methods to INNs.
arXiv Detail & Related papers (2022-04-01T03:31:27Z) - Logic Shrinkage: Learned FPGA Netlist Sparsity for Efficient Neural
Network Inference [3.2296078260106174]
We propose the learned optimization of such LUT-based topologies, resulting in higher-efficiency designs.
Existing implementations of this class of architecture require the manual specification of the number of inputs per LUT, K.
We propose logic shrinkage, a fine-grained netlist pruning methodology enabling K to be automatically learned for every LUT in a neural network targeted for FPGA inference.
arXiv Detail & Related papers (2021-12-04T14:23:24Z) - Sub-bit Neural Networks: Learning to Compress and Accelerate Binary
Neural Networks [72.81092567651395]
Sub-bit Neural Networks (SNNs) are a new type of binary quantization design tailored to compress and accelerate BNNs.
SNNs are trained with a kernel-aware optimization framework, which exploits binary quantization in the fine-grained convolutional kernel space.
Experiments on visual recognition benchmarks and the hardware deployment on FPGA validate the great potentials of SNNs.
arXiv Detail & Related papers (2021-10-18T11:30:29Z) - Neural network relief: a pruning algorithm based on neural activity [47.57448823030151]
We propose a simple importance-score metric that deactivates unimportant connections.
We achieve comparable performance for LeNet architectures on MNIST.
The algorithm is not designed to minimize FLOPs when considering current hardware and software implementations.
arXiv Detail & Related papers (2021-09-22T15:33:49Z) - Learning N:M Fine-grained Structured Sparse Neural Networks From Scratch [75.69506249886622]
Sparsity in Deep Neural Networks (DNNs) has been widely studied to compress and accelerate the models on resource-constrained environments.
In this paper, we are the first to study training from scratch an N:M fine-grained structured sparse network.
arXiv Detail & Related papers (2021-02-08T05:55:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.