Controlling radiative heat flow through cavity electrodynamics
- URL: http://arxiv.org/abs/2403.00851v1
- Date: Thu, 29 Feb 2024 17:09:03 GMT
- Title: Controlling radiative heat flow through cavity electrodynamics
- Authors: Francesca Fassioli, Jerome Faist, Martin Eckstein, Daniele Fausti
- Abstract summary: We develop a formalism to describe the cavity mediated energy exchange between a material and its electromagnetic environment.
We show that coplanar cavities can significantly affect the heat load on the sample if the cavity resonance lies within the frequency region where free-space radiative heat dominates.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Cavity electrodynamics is emerging as a promising tool to control chemical
processes and quantum material properties. In this work we develop a formalism
to describe the cavity mediated energy exchange between a material and its
electromagnetic environment. We show that coplanar cavities can significantly
affect the heat load on the sample if the cavity resonance lies within the
frequency region where free-space radiative heat dominates, typically the
mid-IR at ambient temperature, while spectral filtering is necessary for having
an effect with lower frequency cavities.
Related papers
- Thermal Purcell effect and cavity-induced renormalization of dissipations [0.0]
I derive a simple expression for the radiative heat power absorbed by the material.
I investigate how it changes in the presence of a cavity and show that it is enhanced dramatically for appropriate cavity geometries.
arXiv Detail & Related papers (2023-10-20T18:00:03Z) - Quantum field heat engine powered by phonon-photon interactions [58.720142291102135]
We present a quantum heat engine based on a cavity with two oscillating mirrors.
The engine performs an Otto cycle during which the walls and a field mode interact via a nonlinear Hamiltonian.
arXiv Detail & Related papers (2023-05-10T20:27:15Z) - Incandescent temporal metamaterials [0.0]
Time-varying media can be seized to control and manipulate wave phenomena.
Time-modulation releases strong field fluctuations confined within epsilon-near-zero bodies.
It enables a narrowband (partially coherent) emission spanning the whole range of wavevectors.
arXiv Detail & Related papers (2022-10-11T16:00:00Z) - Photon generation and entanglement in a double superconducting cavity [105.54048699217668]
We study the dynamical Casimir effect in a double superconducting cavity in a quantum electrodynamics architecture.
We study the creation of photons when the walls oscillate harmonically with a small amplitude.
arXiv Detail & Related papers (2022-07-18T16:43:47Z) - Thermal self-oscillations in monolayer graphene coupled to a
superconducting microwave cavity [58.720142291102135]
We observe thermal self-oscillations in a monolayer graphene flake coupled to superconducting resonator.
The experimental observations fit well with theoretical model based on thermal instability.
The modelling of the oscillation sidebands provides a method to evaluate electron phonon coupling in disordered graphene sample at low energies.
arXiv Detail & Related papers (2022-05-27T15:38:41Z) - Cavity Quantum Electrodynamics Effects with Nitrogen Vacancy Center
Spins in Diamond and Microwave Resonators at Room Temperature [4.620106182077669]
Cavity quantum electrodynamics (C-QED) effects have been demonstrated with nitrogen vacancy center spins in diamond in microwave resonators at cryogenic temperature.
We show the possibility to realize strong collective coupling and the resulting C-QED effects with ensembles of spins at room temperature.
The resulting population of Dicke states with higher symmetry implies strong coupling with currently available high-quality resonators.
arXiv Detail & Related papers (2021-10-21T07:56:17Z) - Engineering the Radiative Dynamics of Thermalized Excitons with Metal
Interfaces [58.720142291102135]
We analyze the emission properties of excitons in TMDCs near planar metal interfaces.
We find suppression or enhancement of emission relative to the point dipole case by several orders of magnitude.
nanoscale optical cavities are a viable pathway to generating long-lifetime exciton states in TMDCs.
arXiv Detail & Related papers (2021-10-11T19:40:24Z) - Strong coupling and active cooling in a finite temperature hybrid
atom-cavity system [0.0]
We show that it is possible to observe the quantum nature of strong coupling even at finite temperatures, and to exploit this coupling to permit cooling of the thermal microwave mode towards the ground-state.
Cooling for multiple atoms is also explored, showing maximal cooling for small samples, making this a viable approach to cavity cooling with potential applications in long-range coupling of superconducting qubits via thermal waveguides.
arXiv Detail & Related papers (2021-08-03T09:50:11Z) - A low-loss ferrite circulator as a tunable chiral quantum system [108.66477491099887]
We demonstrate a low-loss waveguide circulator constructed with single-crystalline yttrium iron garnet (YIG) in a 3D cavity.
We show the coherent coupling of its chiral internal modes with integrated superconducting niobium cavities.
We also probe experimentally the effective non-Hermitian dynamics of this system and its effective non-reciprocal eigenmodes.
arXiv Detail & Related papers (2021-06-21T17:34:02Z) - Near-Field Radiative Heat Transfer Eigenmodes [55.41644538483948]
Near-field electromagnetic interaction between nanoscale objects produces enhanced radiative heat transfer.
We present a theoretical framework to describe the temporal dynamics of the radiative heat transfer in ensembles of nanostructures.
arXiv Detail & Related papers (2021-02-10T23:14:30Z) - Quantum versus Classical Regime in Circuit Quantum Acoustodynamics [8.00487309438664]
We experimentally study a circuit quantum acoustodynamics system, which consists of a superconducting artificial atom.
We show that the propagation of microwave photons in the microwave transmission line can be controlled by a few phonons in the acoustic wave resonator.
arXiv Detail & Related papers (2020-11-10T12:49:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.