論文の概要: Autonomous Strike UAVs for Counterterrorism Missions: Challenges and
Preliminary Solutions
- arxiv url: http://arxiv.org/abs/2403.01022v1
- Date: Fri, 1 Mar 2024 22:52:30 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-05 15:38:33.472380
- Title: Autonomous Strike UAVs for Counterterrorism Missions: Challenges and
Preliminary Solutions
- Title(参考訳): 対テロミッションのための自律ストライクUAV:課題と予備的解決
- Authors: Meshari Aljohani, Ravi Mukkamalai and Stephen Olariu
- Abstract要約: 無人航空機(UAV)は現代の戦争において重要な道具となっている。
この研究の焦点は、自律型UAVによる高度に価値の高い目標に対するストライキミッションの実施である。
- 参考スコア(独自算出の注目度): 1.03590082373586
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Unmanned Aircraft Vehicles (UAVs) are becoming a crucial tool in modern
warfare, primarily due to their cost-effectiveness, risk reduction, and ability
to perform a wider range of activities. The use of autonomous UAVs to conduct
strike missions against highly valuable targets is the focus of this research.
Due to developments in ledger technology, smart contracts, and machine
learning, such activities formerly carried out by professionals or remotely
flown UAVs are now feasible. Our study provides the first in-depth analysis of
challenges and preliminary solutions for successful implementation of an
autonomous UAV mission. Specifically, we identify challenges that have to be
overcome and propose possible technical solutions for the challenges
identified. We also derive analytical expressions for the success probability
of an autonomous UAV mission, and describe a machine learning model to train
the UAV.
- Abstract(参考訳): 無人航空機(UAV)は、主にコスト効率、リスク低減、幅広い活動を行う能力のために、現代の戦争において重要な道具となっている。
この研究の焦点は、自律型UAVによる高度に価値の高い目標に対するストライキミッションの実施である。
台帳技術、スマートコントラクト、機械学習の発展により、これまで専門家や遠隔飛行型UAVが行っていた活動が実現可能になった。
本研究は,自律型UAVミッションの実施を成功させるために,課題の詳細な分析と予備的ソリューションを提供する。
具体的には、克服すべき課題を特定し、特定すべき課題に対する技術的解決策を提案する。
また、自律型UAVミッションの成功確率に関する分析式を導出し、UAVを訓練するための機械学習モデルを記述する。
関連論文リスト
- Intercepting Unauthorized Aerial Robots in Controlled Airspace Using Reinforcement Learning [2.519319150166215]
制御空域における無人航空機(UAV)の増殖は重大なリスクをもたらす。
この作業は、強化学習(RL)を用いることで、そのような脅威を管理することのできる堅牢で適応的なシステムの必要性に対処する。
固定翼UAV追跡エージェントの訓練にRLを用いる新しい手法を提案する。
論文 参考訳(メタデータ) (2024-07-09T14:45:47Z) - Work-in-Progress: Crash Course: Can (Under Attack) Autonomous Driving Beat Human Drivers? [60.51287814584477]
本稿では,現在のAVの状況を調べることによって,自律運転における本質的なリスクを評価する。
AVの利点と、現実のシナリオにおける潜在的なセキュリティ課題との微妙なバランスを強調した、特定のクレームを開発する。
論文 参考訳(メタデータ) (2024-05-14T09:42:21Z) - Generative AI for Unmanned Vehicle Swarms: Challenges, Applications and
Opportunities [84.00105187866806]
Generative AI(GAI)は、無人車両群におけるこれらの課題を解決する大きな可能性を提供する。
本稿では,無人車及び無人車群の概要と,その利用事例と既存課題について述べる。
そこで本研究では,無人車両群におけるGAIの適用状況と課題について,さまざまな知見と議論を加えて概説する。
論文 参考訳(メタデータ) (2024-02-28T05:46:23Z) - Deep Learning Based Situation Awareness for Multiple Missiles Evasion [1.7819574476785418]
本研究では,BVR(Beyond Visual Range)空戦シナリオにおけるUAV運用者を支援するための意思決定支援ツールを提案する。
提案手法は,Deep Neural Networks (DNN) を用いて高忠実度シミュレーションから学習し,演算子に異なる戦略の集合に対する結果推定値を与える。
提案システムは,複数のミサイルを運用し,選択肢のファミリーを評価し,最もリスクの低い行動手順を推奨できることを示す。
論文 参考訳(メタデータ) (2024-02-07T14:21:21Z) - Evidential Detection and Tracking Collaboration: New Problem, Benchmark
and Algorithm for Robust Anti-UAV System [56.51247807483176]
無人航空機(UAV)は輸送、監視、軍事など多くの地域で広く使われている。
従来は、UAVの先行情報が常に提供されていた追跡問題として、このようなアンチUAVタスクを単純化していた。
本稿では,従来のUAV情報を含まない複雑な場面において,UAVの認識を特徴とする新しい実用的対UAV問題を初めて定式化する。
論文 参考訳(メタデータ) (2023-06-27T19:30:23Z) - Solving reward-collecting problems with UAVs: a comparison of online
optimization and Q-learning [2.4251007104039006]
与えられたスタートからゴールまでの短い経路を識別し、すべての報酬を集め、グリッド上でランダムに動く敵を避けるという課題について検討する。
本稿では,Deep Q-Learningモデル,$varepsilon$-greedyタブ状Q-Learningモデル,オンライン最適化フレームワークの3つの方法の比較を行った。
我々の実験は、ランダムな逆数を持つ単純なグリッドワールド環境を用いて設計され、これらの手法がどのように機能するかを示し、性能、精度、計算時間の観点から比較する。
論文 参考訳(メタデータ) (2021-11-30T22:27:24Z) - A Multi-UAV System for Exploration and Target Finding in Cluttered and
GPS-Denied Environments [68.31522961125589]
複雑なGPSを用いた複雑な環境において,UAVのチームが協調して目標を探索し,発見するための枠組みを提案する。
UAVのチームは自律的にナビゲートし、探索し、検出し、既知の地図で散らばった環境でターゲットを見つける。
その結果, 提案方式は, 時間的コスト, 調査対象地域の割合, 捜索・救助ミッションの成功率などの面で改善されていることがわかった。
論文 参考訳(メタデータ) (2021-07-19T12:54:04Z) - 3D UAV Trajectory and Data Collection Optimisation via Deep
Reinforcement Learning [75.78929539923749]
無人航空機(UAV)は現在、無線通信におけるネットワーク性能とカバレッジを高めるために配備され始めている。
UAV支援モノのインターネット(IoT)のための最適な資源配分方式を得ることは困難である
本稿では,UAVの最も短い飛行経路に依存しつつ,IoTデバイスから収集したデータ量を最大化しながら,新しいUAV支援IoTシステムを設計する。
論文 参考訳(メタデータ) (2021-06-06T14:08:41Z) - Collaborative Tracking and Capture of Aerial Object using UAVs [0.16863755729554883]
この問題は、Mohammed Bin Zayed International Robotic Challenge 2020のチャレンジ1から動機づけられている。
UAVは視覚フィードバックを利用して、目標を自律的に検出し、接近し、目標を運ぶ車両を邪魔することなく捕獲する。
論文 参考訳(メタデータ) (2020-10-04T14:23:03Z) - Artificial Intelligence for UAV-enabled Wireless Networks: A Survey [72.10851256475742]
無人航空機(UAV)は次世代無線通信ネットワークにおいて有望な技術であると考えられている。
人工知能(AI)は近年急速に成長し、成功している。
UAVベースのネットワークにおけるAIの潜在的な応用について概観する。
論文 参考訳(メタデータ) (2020-09-24T07:11:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。