論文の概要: A Library of Mirrors: Deep Neural Nets in Low Dimensions are Convex Lasso Models with Reflection Features
- arxiv url: http://arxiv.org/abs/2403.01046v4
- Date: Wed, 24 Jul 2024 00:32:35 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-25 19:10:54.901920
- Title: A Library of Mirrors: Deep Neural Nets in Low Dimensions are Convex Lasso Models with Reflection Features
- Title(参考訳): 鏡ライブラリー:低次元のディープニューラルネットは反射特性を持つ凸ラッソモデルである
- Authors: Emi Zeger, Yifei Wang, Aaron Mishkin, Tolga Ergen, Emmanuel Candès, Mert Pilanci,
- Abstract要約: 2層から有限層まで線形に活性化するニューラルネットワークについて検討する。
まず, 分岐深さの離散辞書を用いたLassoモデルについて検討した。
- 参考スコア(独自算出の注目度): 54.83898311047626
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We prove that training neural networks on 1-D data is equivalent to solving convex Lasso problems with discrete, explicitly defined dictionary matrices. We consider neural networks with piecewise linear activations and depths ranging from 2 to an arbitrary but finite number of layers. We first show that two-layer networks with piecewise linear activations are equivalent to Lasso models using a discrete dictionary of ramp functions, with breakpoints corresponding to the training data points. In certain general architectures with absolute value or ReLU activations, a third layer surprisingly creates features that reflect the training data about themselves. Additional layers progressively generate reflections of these reflections. The Lasso representation provides valuable insights into the analysis of globally optimal networks, elucidating their solution landscapes and enabling closed-form solutions in certain special cases. Numerical results show that reflections also occur when optimizing standard deep networks using standard non-convex optimizers. Additionally, we demonstrate our theory with autoregressive time series models.
- Abstract(参考訳): 1次元データ上でのニューラルネットワークのトレーニングは、離散的に定義された辞書行列を用いて凸ラッソ問題の解法と等価であることを示す。
2層から有限層までの線形な活性化と深度を持つニューラルネットワークについて検討する。
まず, 分岐関数の離散辞書を用いたラッソモデルと等価な2層ネットワークが, トレーニングデータポイントに対応するブレークポイントを持つことを示す。
絶対値やReLUアクティベーションを持つある種の一般的なアーキテクチャでは、第3のレイヤが驚くほど、自分自身に関するトレーニングデータを反映した機能を生成します。
追加の層は、これらの反射の反射を徐々に生成する。
ラッソ表現は、大域的最適ネットワークの分析に関する貴重な洞察を提供し、解の風景を解明し、特定の場合において閉形式解を可能にする。
数値計算により、標準の非凸最適化器を用いて標準のディープネットワークを最適化する際にも反射が発生することが示された。
さらに、自己回帰時系列モデルを用いて、我々の理論を実証する。
関連論文リスト
- Deep Loss Convexification for Learning Iterative Models [11.36644967267829]
点雲登録のための反復的最近点(ICP)のような反復的手法は、しばしば悪い局所最適性に悩まされる。
我々は,各地真実の周囲に凸景観を形成する学習を提案する。
論文 参考訳(メタデータ) (2024-11-16T01:13:04Z) - The Convex Landscape of Neural Networks: Characterizing Global Optima
and Stationary Points via Lasso Models [75.33431791218302]
ディープニューラルネットワーク(DNN)モデルは、プログラミング目的に使用される。
本稿では,凸型神経回復モデルについて検討する。
定常的非次元目的物はすべて,グローバルサブサンプリング型凸解法プログラムとして特徴付けられることを示す。
また, 静止非次元目的物はすべて, グローバルサブサンプリング型凸解法プログラムとして特徴付けられることを示す。
論文 参考訳(メタデータ) (2023-12-19T23:04:56Z) - From Complexity to Clarity: Analytical Expressions of Deep Neural Network Weights via Clifford's Geometric Algebra and Convexity [54.01594785269913]
我々は,標準正規化損失のトレーニングにおいて,深部ReLUニューラルネットワークの最適重みがトレーニングサンプルのウェッジ積によって与えられることを示した。
トレーニング問題は、トレーニングデータセットの幾何学的構造をエンコードするウェッジ製品機能よりも凸最適化に還元される。
論文 参考訳(メタデータ) (2023-09-28T15:19:30Z) - ReLU Neural Networks with Linear Layers are Biased Towards Single- and Multi-Index Models [9.96121040675476]
この原稿は、2層以上の深さのニューラルネットワークによって学習された関数の性質が予測にどのように影響するかを考察している。
我々のフレームワークは、すべて同じキャパシティを持つが表現コストが異なる、様々な深さのネットワーク群を考慮に入れている。
論文 参考訳(メタデータ) (2023-05-24T22:10:12Z) - Global Optimality Beyond Two Layers: Training Deep ReLU Networks via
Convex Programs [39.799125462526234]
我々は凸最適化のレンズを通して隠れ正規化機構を明らかにするための新しい統一フレームワークを開発した。
我々は、合成データセットと実データセットの両方を含む実験を通して、理論的結果を数値的に検証する。
論文 参考訳(メタデータ) (2021-10-11T18:00:30Z) - DuRIN: A Deep-unfolded Sparse Seismic Reflectivity Inversion Network [23.080395291046408]
地震データから界面の位置と反射係数の振幅を復元する反射地震学の問題を考察する。
重み付きminimax-concave penalty-regularized reflectivity inversion法を提案し,モデルベースニューラルネットワークを用いて解く。
論文 参考訳(メタデータ) (2021-04-10T07:49:38Z) - Implicit Convex Regularizers of CNN Architectures: Convex Optimization
of Two- and Three-Layer Networks in Polynomial Time [70.15611146583068]
本稿では,ReLUアクティベーションを用いた畳み込みニューラルネットワーク(CNN)のトレーニングについて検討する。
我々は,データサンプル数,ニューロン数,データ次元に関して,厳密な凸最適化を導入する。
論文 参考訳(メタデータ) (2020-06-26T04:47:20Z) - The Hidden Convex Optimization Landscape of Two-Layer ReLU Neural
Networks: an Exact Characterization of the Optimal Solutions [51.60996023961886]
コーン制約のある凸最適化プログラムを解くことにより,グローバルな2層ReLUニューラルネットワークの探索が可能であることを示す。
我々の分析は新しく、全ての最適解を特徴づけ、最近、ニューラルネットワークのトレーニングを凸空間に持ち上げるために使われた双対性に基づく分析を活用できない。
論文 参考訳(メタデータ) (2020-06-10T15:38:30Z) - Revealing the Structure of Deep Neural Networks via Convex Duality [70.15611146583068]
我々は,正規化深層ニューラルネットワーク(DNN)について検討し,隠蔽層の構造を特徴付ける凸解析フレームワークを導入する。
正規正規化学習問題に対する最適隠蔽層重みの集合が凸集合の極点として明確に見出されることを示す。
ホワイトデータを持つ深部ReLUネットワークに同じ特徴を応用し、同じ重み付けが成り立つことを示す。
論文 参考訳(メタデータ) (2020-02-22T21:13:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。