Spatially parallel decoding for multi-qubit lattice surgery
- URL: http://arxiv.org/abs/2403.01353v2
- Date: Mon, 6 May 2024 13:39:05 GMT
- Title: Spatially parallel decoding for multi-qubit lattice surgery
- Authors: Sophia Fuhui Lin, Eric C. Peterson, Krishanu Sankar, Prasahnt Sivarajah,
- Abstract summary: Running quantum algorithms protected by quantum error correction requires a real time, classical decoder.
Most prior work on real time decoding has focused on an isolated logical qubit encoded in the surface code.
For surface code, quantum programs of utility will require multi-qubit interactions performed via lattice surgery.
A large merged patch can arise during lattice surgery -- possibly as large as the entire device.
- Score: 0.10713888959520208
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Running quantum algorithms protected by quantum error correction requires a real time, classical decoder. To prevent the accumulation of a backlog, this decoder must process syndromes from the quantum device at a faster rate than they are generated. Most prior work on real time decoding has focused on an isolated logical qubit encoded in the surface code. However, for surface code, quantum programs of utility will require multi-qubit interactions performed via lattice surgery. A large merged patch can arise during lattice surgery -- possibly as large as the entire device. This puts a significant strain on a real time decoder, which must decode errors on this merged patch and maintain the level of fault-tolerance that it achieves on isolated logical qubits. These requirements are relaxed by using spatially parallel decoding, which can be accomplished by dividing the physical qubits on the device into multiple overlapping groups and assigning a decoder module to each. We refer to this approach as spatially parallel windows. While previous work has explored similar ideas, none have addressed system-specific considerations pertinent to the task or the constraints from using hardware accelerators. In this work, we demonstrate how to configure spatially parallel windows, so that the scheme (1) is compatible with hardware accelerators, (2) supports general lattice surgery operations, (3) maintains the fidelity of the logical qubits, and (4) meets the throughput requirement for real time decoding. Furthermore, our results reveal the importance of optimally choosing the buffer width to achieve a balance between accuracy and throughput -- a decision that should be influenced by the device's physical noise.
Related papers
- Local Clustering Decoder: a fast and adaptive hardware decoder for the surface code [0.0]
We introduce the Local Clustering Decoder as a solution that simultaneously achieves the accuracy and speed requirements of a real-time decoding system.
Our decoder is implemented on FPGAs and exploits hardware parallelism to keep pace with the fastest qubit types.
It enables one million error-free quantum operations with 4x fewer physical qubits when compared to standard non-adaptive decoding.
arXiv Detail & Related papers (2024-11-15T16:43:59Z) - Generalizing the matching decoder for the Chamon code [1.8416014644193066]
We implement a matching decoder for a three-dimensional, non-CSS, low-density parity check code known as the Chamon code.
We find that a generalized matching decoder that is augmented by a belief-propagation step prior to matching gives a threshold of 10.5% for depolarising noise.
arXiv Detail & Related papers (2024-11-05T19:00:12Z) - Demonstrating real-time and low-latency quantum error correction with superconducting qubits [52.08698178354922]
We demonstrate low-latency feedback with a scalable FPGA decoder integrated into a superconducting quantum processor.
We observe logical error suppression as the number of decoding rounds is increased.
The decoder throughput and latency developed in this work, combined with continued device improvements, unlock the next generation of experiments.
arXiv Detail & Related papers (2024-10-07T17:07:18Z) - Localized statistics decoding: A parallel decoding algorithm for quantum low-density parity-check codes [3.001631679133604]
We introduce localized statistics decoding for arbitrary quantum low-density parity-check codes.
Our decoder is more amenable to implementation on specialized hardware, positioning it as a promising candidate for decoding real-time syndromes from experiments.
arXiv Detail & Related papers (2024-06-26T18:00:09Z) - How to choose a decoder for a fault-tolerant quantum computer? The speed
vs accuracy trade-off [48.73569522869751]
We show how to choose the best decoder for a given quantum architecture.
By analyzing the speed vs. accuracy tradeoff, we propose strategies to select the optimal stopping time.
We illustrate our protocol for the surface code equipped with a desktop implementation of the PyMatching decoder.
arXiv Detail & Related papers (2023-10-23T19:30:08Z) - Modular decoding: parallelizable real-time decoding for quantum
computers [55.41644538483948]
Real-time quantum computation will require decoding algorithms capable of extracting logical outcomes from a stream of data generated by noisy quantum hardware.
We propose modular decoding, an approach capable of addressing this challenge with minimal additional communication and without sacrificing decoding accuracy.
We introduce the edge-vertex decomposition, a concrete instance of modular decoding for lattice-surgery style fault-tolerant blocks.
arXiv Detail & Related papers (2023-03-08T19:26:10Z) - Parallel window decoding enables scalable fault tolerant quantum
computation [2.624902795082451]
We present a methodology that parallelizes the decoding problem and achieves almost arbitrary syndrome processing speed.
Our parallelization requires some classical feedback decisions to be delayed, leading to a slow-down of the logical clock speed.
Using known auto-teleportation gadgets the slow-down can be eliminated altogether in exchange for increased qubit overhead.
arXiv Detail & Related papers (2022-09-18T12:37:57Z) - Improved decoding of circuit noise and fragile boundaries of tailored
surface codes [61.411482146110984]
We introduce decoders that are both fast and accurate, and can be used with a wide class of quantum error correction codes.
Our decoders, named belief-matching and belief-find, exploit all noise information and thereby unlock higher accuracy demonstrations of QEC.
We find that the decoders led to a much higher threshold and lower qubit overhead in the tailored surface code with respect to the standard, square surface code.
arXiv Detail & Related papers (2022-03-09T18:48:54Z) - Dense Coding with Locality Restriction for Decoder: Quantum Encoders vs.
Super-Quantum Encoders [67.12391801199688]
We investigate dense coding by imposing various locality restrictions to our decoder.
In this task, the sender Alice and the receiver Bob share an entangled state.
arXiv Detail & Related papers (2021-09-26T07:29:54Z) - Space-efficient binary optimization for variational computing [68.8204255655161]
We show that it is possible to greatly reduce the number of qubits needed for the Traveling Salesman Problem.
We also propose encoding schemes which smoothly interpolate between the qubit-efficient and the circuit depth-efficient models.
arXiv Detail & Related papers (2020-09-15T18:17:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.