MovieLLM: Enhancing Long Video Understanding with AI-Generated Movies
- URL: http://arxiv.org/abs/2403.01422v2
- Date: Mon, 24 Jun 2024 04:55:28 GMT
- Title: MovieLLM: Enhancing Long Video Understanding with AI-Generated Movies
- Authors: Zhende Song, Chenchen Wang, Jiamu Sheng, Chi Zhang, Gang Yu, Jiayuan Fan, Tao Chen,
- Abstract summary: MovieLLM is a novel framework designed to synthesize consistent and high-quality video data for instruction tuning.
Our experiments validate that the data produced by MovieLLM significantly improves the performance of multimodal models in understanding complex video narratives.
- Score: 21.489102981760766
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Development of multimodal models has marked a significant step forward in how machines understand videos. These models have shown promise in analyzing short video clips. However, when it comes to longer formats like movies, they often fall short. The main hurdles are the lack of high-quality, diverse video data and the intensive work required to collect or annotate such data. In face of these challenges, we propose MovieLLM, a novel framework designed to synthesize consistent and high-quality video data for instruction tuning. The pipeline is carefully designed to control the style of videos by improving textual inversion technique with powerful text generation capability of GPT-4. As the first framework to do such thing, our approach stands out for its flexibility and scalability, empowering users to create customized movies with only one description. This makes it a superior alternative to traditional data collection methods. Our extensive experiments validate that the data produced by MovieLLM significantly improves the performance of multimodal models in understanding complex video narratives, overcoming the limitations of existing datasets regarding scarcity and bias.
Related papers
- Video Instruction Tuning With Synthetic Data [84.64519990333406]
We create a high-quality synthetic dataset specifically for video instruction-following, namely LLaVA-Video-178K.
This dataset includes key tasks such as detailed captioning, open-ended question-answering (QA), and multiple-choice QA.
By training on this dataset, in combination with existing visual instruction tuning data, we introduce LLaVA-Video, a new video LMM.
arXiv Detail & Related papers (2024-10-03T17:36:49Z) - Interpolating Video-LLMs: Toward Longer-sequence LMMs in a Training-free Manner [53.671484175063995]
Video-LLMs are pre-trained to process short videos, limiting their broader application for understanding longer video content.
We introduce an alternative video token rearrangement technique that circumvents limitations imposed by the fixed video encoder and alignment projector.
arXiv Detail & Related papers (2024-09-19T17:59:55Z) - xGen-VideoSyn-1: High-fidelity Text-to-Video Synthesis with Compressed Representations [120.52120919834988]
xGen-SynVideo-1 is a text-to-video (T2V) generation model capable of producing realistic scenes from textual descriptions.
VidVAE compresses video data both spatially and temporally, significantly reducing the length of visual tokens.
DiT model incorporates spatial and temporal self-attention layers, enabling robust generalization across different timeframes and aspect ratios.
arXiv Detail & Related papers (2024-08-22T17:55:22Z) - VideoGPT+: Integrating Image and Video Encoders for Enhanced Video Understanding [15.959757105308238]
Video LMMs rely on either image or video encoders to process visual inputs, each of which has its own limitations.
We introduce VideoGPT+, which combines the complementary benefits of the image encoder (for detailed spatial understanding) and the video encoder (for global temporal context modeling)
Our architecture showcases improved performance across multiple video benchmarks, including VCGBench, MVBench and Zero-shot question-answering.
arXiv Detail & Related papers (2024-06-13T17:59:59Z) - Video-LaVIT: Unified Video-Language Pre-training with Decoupled Visual-Motional Tokenization [52.63845811751936]
Video pre-training is challenging due to the modeling of its dynamics video.
In this paper, we address such limitations in video pre-training with an efficient video decomposition.
Our framework is both capable of comprehending and generating image and video content, as demonstrated by its performance across 13 multimodal benchmarks.
arXiv Detail & Related papers (2024-02-05T16:30:49Z) - TAM-VT: Transformation-Aware Multi-scale Video Transformer for Segmentation and Tracking [33.75267864844047]
Video Object (VOS) has emerged as an increasingly important problem with availability of larger datasets and more complex and realistic settings.
We propose a novel, clip-based DETR-style encoder-decoder architecture, which focuses on systematically analyzing and addressing aforementioned challenges.
Specifically, we propose a novel transformation-aware loss that focuses learning on portions of the video where an object undergoes significant deformations.
arXiv Detail & Related papers (2023-12-13T21:02:03Z) - A Simple Recipe for Contrastively Pre-training Video-First Encoders
Beyond 16 Frames [54.90226700939778]
We build on the common paradigm of transferring large-scale, image--text models to video via shallow temporal fusion.
We expose two limitations to the approach: (1) decreased spatial capabilities, likely due to poor video--language alignment in standard video datasets, and (2) higher memory consumption, bottlenecking the number of frames that can be processed.
arXiv Detail & Related papers (2023-12-12T16:10:19Z) - Probabilistic Adaptation of Text-to-Video Models [181.84311524681536]
Video Adapter is capable of incorporating the broad knowledge and preserving the high fidelity of a large pretrained video model in a task-specific small video model.
Video Adapter is able to generate high-quality yet specialized videos on a variety of tasks such as animation, egocentric modeling, and modeling of simulated and real-world robotics data.
arXiv Detail & Related papers (2023-06-02T19:00:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.