Calibrating doubly-robust estimators with unbalanced treatment assignment
- URL: http://arxiv.org/abs/2403.01585v2
- Date: Tue, 11 Jun 2024 07:11:52 GMT
- Title: Calibrating doubly-robust estimators with unbalanced treatment assignment
- Authors: Daniele Ballinari,
- Abstract summary: We propose a simple extension of the DML estimator which undersamples data for propensity score modeling.
The paper provides theoretical results showing that the estimator retains the estimator's properties and calibrates scores to match the original distribution.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Machine learning methods, particularly the double machine learning (DML) estimator (Chernozhukov et al., 2018), are increasingly popular for the estimation of the average treatment effect (ATE). However, datasets often exhibit unbalanced treatment assignments where only a few observations are treated, leading to unstable propensity score estimations. We propose a simple extension of the DML estimator which undersamples data for propensity score modeling and calibrates scores to match the original distribution. The paper provides theoretical results showing that the estimator retains the DML estimator's asymptotic properties. A simulation study illustrates the finite sample performance of the estimator.
Related papers
- Improving the Finite Sample Performance of Double/Debiased Machine Learning with Propensity Score Calibration [0.0]
Double/debiased machine learning (DML) uses a double-robust score function that relies on the prediction of nuisance functions.
Estimators relying on double-robust score functions are highly sensitive to errors in propensity score predictions.
This paper investigates the use of probability calibration approaches within the DML framework.
arXiv Detail & Related papers (2024-09-07T17:44:01Z) - On semi-supervised estimation using exponential tilt mixture models [12.347498345854715]
Consider a semi-supervised setting with a labeled dataset of binary responses and predictors and an unlabeled dataset with only predictors.
For semi-supervised estimation, we develop further analysis and understanding of a statistical approach using exponential tilt mixture (ETM) models.
arXiv Detail & Related papers (2023-11-14T19:53:26Z) - Leveraging Variational Autoencoders for Parameterized MMSE Estimation [10.141454378473972]
We propose a variational autoencoder-based framework for parameterizing a conditional linear minimum mean squared error estimator.
The derived estimator is shown to approximate the minimum mean squared error estimator by utilizing the variational autoencoder as a generative prior for the estimation problem.
We conduct a rigorous analysis by bounding the difference between the proposed and the minimum mean squared error estimator.
arXiv Detail & Related papers (2023-07-11T15:41:34Z) - Robust Causal Learning for the Estimation of Average Treatment Effects [14.96459402684986]
We propose a Robust Causal Learning (RCL) method to offset the deficiencies of the Double/Debiased Machine Learning (DML) estimators.
Empirically, the comprehensive experiments show that i) the RCL estimators give more stable estimations of the causal parameters than the DML estimators.
arXiv Detail & Related papers (2022-09-05T07:35:58Z) - Learning to Estimate Without Bias [57.82628598276623]
Gauss theorem states that the weighted least squares estimator is a linear minimum variance unbiased estimation (MVUE) in linear models.
In this paper, we take a first step towards extending this result to non linear settings via deep learning with bias constraints.
A second motivation to BCE is in applications where multiple estimates of the same unknown are averaged for improved performance.
arXiv Detail & Related papers (2021-10-24T10:23:51Z) - Imputation-Free Learning from Incomplete Observations [73.15386629370111]
We introduce the importance of guided gradient descent (IGSGD) method to train inference from inputs containing missing values without imputation.
We employ reinforcement learning (RL) to adjust the gradients used to train the models via back-propagation.
Our imputation-free predictions outperform the traditional two-step imputation-based predictions using state-of-the-art imputation methods.
arXiv Detail & Related papers (2021-07-05T12:44:39Z) - Efficient Estimation and Evaluation of Prediction Rules in
Semi-Supervised Settings under Stratified Sampling [6.930951733450623]
We propose a two-step semi-supervised learning (SSL) procedure for evaluating a prediction rule derived from a working binary regression model.
In step I, we impute the missing labels via weighted regression with nonlinear basis functions to account for nonrandom sampling.
In step II, we augment the initial imputations to ensure the consistency of the resulting estimators.
arXiv Detail & Related papers (2020-10-19T12:54:45Z) - Performance metrics for intervention-triggering prediction models do not
reflect an expected reduction in outcomes from using the model [71.9860741092209]
Clinical researchers often select among and evaluate risk prediction models.
Standard metrics calculated from retrospective data are only related to model utility under certain assumptions.
When predictions are delivered repeatedly throughout time, the relationship between standard metrics and utility is further complicated.
arXiv Detail & Related papers (2020-06-02T16:26:49Z) - Machine learning for causal inference: on the use of cross-fit
estimators [77.34726150561087]
Doubly-robust cross-fit estimators have been proposed to yield better statistical properties.
We conducted a simulation study to assess the performance of several estimators for the average causal effect (ACE)
When used with machine learning, the doubly-robust cross-fit estimators substantially outperformed all of the other estimators in terms of bias, variance, and confidence interval coverage.
arXiv Detail & Related papers (2020-04-21T23:09:55Z) - Estimating Gradients for Discrete Random Variables by Sampling without
Replacement [93.09326095997336]
We derive an unbiased estimator for expectations over discrete random variables based on sampling without replacement.
We show that our estimator can be derived as the Rao-Blackwellization of three different estimators.
arXiv Detail & Related papers (2020-02-14T14:15:18Z) - Localized Debiased Machine Learning: Efficient Inference on Quantile
Treatment Effects and Beyond [69.83813153444115]
We consider an efficient estimating equation for the (local) quantile treatment effect ((L)QTE) in causal inference.
Debiased machine learning (DML) is a data-splitting approach to estimating high-dimensional nuisances.
We propose localized debiased machine learning (LDML), which avoids this burdensome step.
arXiv Detail & Related papers (2019-12-30T14:42:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.