A Unified Model Selection Technique for Spectral Clustering Based Motion Segmentation
- URL: http://arxiv.org/abs/2403.01606v2
- Date: Mon, 6 May 2024 22:19:22 GMT
- Title: A Unified Model Selection Technique for Spectral Clustering Based Motion Segmentation
- Authors: Yuxiang Huang, John Zelek,
- Abstract summary: We propose a unified model selection technique to automatically infer the number of motion groups for spectral clustering based motion segmentation methods.
We evaluate our method on the KT3DMoSeg dataset and achieve competitve results comparing to the baseline.
- Score: 2.637467480598825
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Motion segmentation is a fundamental problem in computer vision and is crucial in various applications such as robotics, autonomous driving and action recognition. Recently, spectral clustering based methods have shown impressive results on motion segmentation in dynamic environments. These methods perform spectral clustering on motion affinity matrices to cluster objects or point trajectories in the scene into different motion groups. However, existing methods often need the number of motions present in the scene to be known, which significantly reduces their practicality. In this paper, we propose a unified model selection technique to automatically infer the number of motion groups for spectral clustering based motion segmentation methods by combining different existing model selection techniques together. We evaluate our method on the KT3DMoSeg dataset and achieve competitve results comparing to the baseline where the number of clusters is given as ground truth information.
Related papers
- An Information Compensation Framework for Zero-Shot Skeleton-based Action Recognition [49.45660055499103]
Zero-shot human skeleton-based action recognition aims to construct a model that can recognize actions outside the categories seen during training.
Previous research has focused on aligning sequences' visual and semantic spatial distributions.
We introduce a new loss function sampling method to obtain a tight and robust representation.
arXiv Detail & Related papers (2024-06-02T06:53:01Z) - Zero-Shot Monocular Motion Segmentation in the Wild by Combining Deep Learning with Geometric Motion Model Fusion [6.805017878728801]
We propose a novel monocular dense segmentation method that achieves state-of-the-art motion segmentation results in a zero-shot manner.
The proposed method synergestically combines the strengths of deep learning and geometric model fusion methods.
Experiments show that our method achieves competitive results on several motion segmentation datasets and even surpasses some state-of-the-art supervised methods on certain benchmarks.
arXiv Detail & Related papers (2024-05-02T20:42:17Z) - Appearance-Based Refinement for Object-Centric Motion Segmentation [85.2426540999329]
We introduce an appearance-based refinement method that leverages temporal consistency in video streams to correct inaccurate flow-based proposals.
Our approach involves a sequence-level selection mechanism that identifies accurate flow-predicted masks as exemplars.
Its performance is evaluated on multiple video segmentation benchmarks, including DAVIS, YouTube, SegTrackv2, and FBMS-59.
arXiv Detail & Related papers (2023-12-18T18:59:51Z) - Unified Multi-View Orthonormal Non-Negative Graph Based Clustering
Framework [74.25493157757943]
We formulate a novel clustering model, which exploits the non-negative feature property and incorporates the multi-view information into a unified joint learning framework.
We also explore, for the first time, the multi-model non-negative graph-based approach to clustering data based on deep features.
arXiv Detail & Related papers (2022-11-03T08:18:27Z) - Consistency and Diversity induced Human Motion Segmentation [231.36289425663702]
We propose a novel Consistency and Diversity induced human Motion (CDMS) algorithm.
Our model factorizes the source and target data into distinct multi-layer feature spaces.
A multi-mutual learning strategy is carried out to reduce the domain gap between the source and target data.
arXiv Detail & Related papers (2022-02-10T06:23:56Z) - Automated Approach for Computer Vision-based Vehicle Movement
Classification at Traffic Intersections [7.3496760394236595]
We propose an automated classification method for movement specific classification of vision-based vehicle trajectories.
Our framework identifies different movement patterns observed in a traffic scene using an unsupervised hierarchical clustering technique.
A new similarity measure was designed to overcome the inherent shortcomings of vision-based trajectories.
arXiv Detail & Related papers (2021-11-17T15:02:43Z) - Weighted Sparse Subspace Representation: A Unified Framework for
Subspace Clustering, Constrained Clustering, and Active Learning [0.3553493344868413]
We first propose a novel spectral-based subspace clustering algorithm that seeks to represent each point as a sparse convex combination of a few nearby points.
We then extend the algorithm to constrained clustering and active learning settings.
Our motivation for developing such a framework stems from the fact that typically either a small amount of labelled data is available in advance; or it is possible to label some points at a cost.
arXiv Detail & Related papers (2021-06-08T13:39:43Z) - Spatially Coherent Clustering Based on Orthogonal Nonnegative Matrix
Factorization [0.0]
We introduce in this work clustering models based on a total variation (TV) regularization procedure on the cluster membership matrix.
We provide a numerical evaluation of all proposed methods on a hyperspectral dataset obtained from a matrix-assisted laser desorption/ionisation imaging measurement.
arXiv Detail & Related papers (2021-04-25T23:40:41Z) - MultiBodySync: Multi-Body Segmentation and Motion Estimation via 3D Scan
Synchronization [61.015704878681795]
We present a novel, end-to-end trainable multi-body motion segmentation and rigid registration framework for 3D point clouds.
The two non-trivial challenges posed by this multi-scan multibody setting are.
guaranteeing correspondence and segmentation consistency across multiple input point clouds and.
obtaining robust motion-based rigid body segmentation applicable to novel object categories.
arXiv Detail & Related papers (2021-01-17T06:36:28Z) - ClusterVO: Clustering Moving Instances and Estimating Visual Odometry
for Self and Surroundings [54.33327082243022]
ClusterVO is a stereo Visual Odometry which simultaneously clusters and estimates the motion of both ego and surrounding rigid clusters/objects.
Unlike previous solutions relying on batch input or imposing priors on scene structure or dynamic object models, ClusterVO is online, general and thus can be used in various scenarios including indoor scene understanding and autonomous driving.
arXiv Detail & Related papers (2020-03-29T09:06:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.