Weighted Sparse Subspace Representation: A Unified Framework for
Subspace Clustering, Constrained Clustering, and Active Learning
- URL: http://arxiv.org/abs/2106.04330v1
- Date: Tue, 8 Jun 2021 13:39:43 GMT
- Title: Weighted Sparse Subspace Representation: A Unified Framework for
Subspace Clustering, Constrained Clustering, and Active Learning
- Authors: Hankui Peng, Nicos G. Pavlidis
- Abstract summary: We first propose a novel spectral-based subspace clustering algorithm that seeks to represent each point as a sparse convex combination of a few nearby points.
We then extend the algorithm to constrained clustering and active learning settings.
Our motivation for developing such a framework stems from the fact that typically either a small amount of labelled data is available in advance; or it is possible to label some points at a cost.
- Score: 0.3553493344868413
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Spectral-based subspace clustering methods have proved successful in many
challenging applications such as gene sequencing, image recognition, and motion
segmentation. In this work, we first propose a novel spectral-based subspace
clustering algorithm that seeks to represent each point as a sparse convex
combination of a few nearby points. We then extend the algorithm to constrained
clustering and active learning settings. Our motivation for developing such a
framework stems from the fact that typically either a small amount of labelled
data is available in advance; or it is possible to label some points at a cost.
The latter scenario is typically encountered in the process of validating a
cluster assignment. Extensive experiments on simulated and real data sets show
that the proposed approach is effective and competitive with state-of-the-art
methods.
Related papers
- GCC: Generative Calibration Clustering [55.44944397168619]
We propose a novel Generative Clustering (GCC) method to incorporate feature learning and augmentation into clustering procedure.
First, we develop a discrimirative feature alignment mechanism to discover intrinsic relationship across real and generated samples.
Second, we design a self-supervised metric learning to generate more reliable cluster assignment.
arXiv Detail & Related papers (2024-04-14T01:51:11Z) - Spectral Clustering in Convex and Constrained Settings [0.0]
We introduce a novel framework for seamlessly integrating pairwise constraints into semidefinite spectral clustering.
Our methodology systematically extends the capabilities of semidefinite spectral clustering to capture complex data structures.
arXiv Detail & Related papers (2024-04-03T18:50:14Z) - Stable Cluster Discrimination for Deep Clustering [7.175082696240088]
Deep clustering can optimize representations of instances (i.e., representation learning) and explore the inherent data distribution.
The coupled objective implies a trivial solution that all instances collapse to the uniform features.
In this work, we first show that the prevalent discrimination task in supervised learning is unstable for one-stage clustering.
A novel stable cluster discrimination (SeCu) task is proposed and a new hardness-aware clustering criterion can be obtained accordingly.
arXiv Detail & Related papers (2023-11-24T06:43:26Z) - Instance-Optimal Cluster Recovery in the Labeled Stochastic Block Model [79.46465138631592]
We devise an efficient algorithm that recovers clusters using the observed labels.
We present Instance-Adaptive Clustering (IAC), the first algorithm whose performance matches these lower bounds both in expectation and with high probability.
arXiv Detail & Related papers (2023-06-18T08:46:06Z) - Unified Multi-View Orthonormal Non-Negative Graph Based Clustering
Framework [74.25493157757943]
We formulate a novel clustering model, which exploits the non-negative feature property and incorporates the multi-view information into a unified joint learning framework.
We also explore, for the first time, the multi-model non-negative graph-based approach to clustering data based on deep features.
arXiv Detail & Related papers (2022-11-03T08:18:27Z) - DeepCluE: Enhanced Image Clustering via Multi-layer Ensembles in Deep
Neural Networks [53.88811980967342]
This paper presents a Deep Clustering via Ensembles (DeepCluE) approach.
It bridges the gap between deep clustering and ensemble clustering by harnessing the power of multiple layers in deep neural networks.
Experimental results on six image datasets confirm the advantages of DeepCluE over the state-of-the-art deep clustering approaches.
arXiv Detail & Related papers (2022-06-01T09:51:38Z) - Analysis of Sparse Subspace Clustering: Experiments and Random
Projection [0.0]
Clustering is a technique that is used in many domains, such as face clustering, plant categorization, image segmentation, document classification.
We analyze one of these techniques: a powerful clustering algorithm called Sparse Subspace Clustering.
We demonstrate several experiments using this method and then introduce a new approach that can reduce the computational time required to perform sparse subspace clustering.
arXiv Detail & Related papers (2022-04-01T23:55:53Z) - Gradient Based Clustering [72.15857783681658]
We propose a general approach for distance based clustering, using the gradient of the cost function that measures clustering quality.
The approach is an iterative two step procedure (alternating between cluster assignment and cluster center updates) and is applicable to a wide range of functions.
arXiv Detail & Related papers (2022-02-01T19:31:15Z) - Learning the Precise Feature for Cluster Assignment [39.320210567860485]
We propose a framework which integrates representation learning and clustering into a single pipeline for the first time.
The proposed framework exploits the powerful ability of recently developed generative models for learning intrinsic features.
Experimental results show that the performance of the proposed method is superior, or at least comparable to, the state-of-the-art methods.
arXiv Detail & Related papers (2021-06-11T04:08:54Z) - Scalable Hierarchical Agglomerative Clustering [65.66407726145619]
Existing scalable hierarchical clustering methods sacrifice quality for speed.
We present a scalable, agglomerative method for hierarchical clustering that does not sacrifice quality and scales to billions of data points.
arXiv Detail & Related papers (2020-10-22T15:58:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.