論文の概要: GCAN: Generative Counterfactual Attention-guided Network for Explainable Cognitive Decline Diagnostics based on fMRI Functional Connectivity
- arxiv url: http://arxiv.org/abs/2403.01758v2
- Date: Sat, 24 Aug 2024 11:36:15 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-28 00:16:18.581250
- Title: GCAN: Generative Counterfactual Attention-guided Network for Explainable Cognitive Decline Diagnostics based on fMRI Functional Connectivity
- Title(参考訳): GCAN:fMRI機能接続性に基づく説明可能な認知劣化診断のための生成的非現実的注意誘導ネットワーク
- Authors: Xiongri Shen, Zhenxi Song, Zhiguo Zhang,
- Abstract要約: 軽度認知障害 (MCI) と主観的認知低下 (SCD) の fMRI 機能接続 (FC) による診断が盛んである。
ほとんどのFCベースの診断モデルは、カジュアルな推論を欠いたブラックボックスであるため、認知低下のFCベースの神経バイオマーカーに関する知識にはほとんど寄与しない。
本稿では,認知低下関連脳領域の認識に反実的推論を導入するGCAN(Generative counterfactual attention-guided Network)を提案する。
- 参考スコア(独自算出の注目度): 1.3426127666129704
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Diagnosis of mild cognitive impairment (MCI) and subjective cognitive decline (SCD) from fMRI functional connectivity (FC) has gained popularity, but most FC-based diagnostic models are black boxes lacking casual reasoning so they contribute little to the knowledge about FC-based neural biomarkers of cognitive decline.To enhance the explainability of diagnostic models, we propose a generative counterfactual attention-guided network (GCAN), which introduces counterfactual reasoning to recognize cognitive decline-related brain regions and then uses these regions as attention maps to boost the prediction performance of diagnostic models. Furthermore, to tackle the difficulty in the generation of highly-structured and brain-atlas-constrained FC, which is essential in counterfactual reasoning, an Atlas-Aware Bidirectional Transformer (AABT) method is developed. AABT employs a bidirectional strategy to encode and decode the tokens from each network of brain atlas, thereby enhancing the generation of high-quality target label FC. In the experiments of hospital-collected and ADNI datasets, the generated attention maps closely resemble FC abnormalities in the literature on SCD and MCI. The diagnostic performance is also superior to baseline models. The code is available at https://github.com/SXR3015/GCAN
- Abstract(参考訳): 軽度認知障害(MCI)の診断とfMRI機能的接続(FC)からの主観的認知低下(SCD)が普及しているが、ほとんどのFCベースの診断モデルは、カジュアルな推論を欠いたブラックボックスであり、認知低下に関するFCベースの神経バイオマーカーに関する知識にはほとんど寄与しない。
さらに,Atlas-Aware Bidirectional Transformer (AABT) 法を考案した。
AABTは双方向戦略を用いて、脳房の各ネットワークからトークンをエンコードしデコードし、高品質なターゲットラベルFCを生成する。
病院で収集したデータセットとADNIデータセットの実験では、SCDとMCIに関する文献において、生成されたアテンションマップはFC異常によく似ている。
診断性能はベースラインモデルよりも優れている。
コードはhttps://github.com/SXR3015/GCANで公開されている。
関連論文リスト
- Spatial-Temporal DAG Convolutional Networks for End-to-End Joint
Effective Connectivity Learning and Resting-State fMRI Classification [42.82118108887965]
総合的な脳コネクトームの構築は、静止状態fMRI(rs-fMRI)解析において基本的な重要性が証明されている。
我々は脳ネットワークを有向非循環グラフ(DAG)としてモデル化し、脳領域間の直接因果関係を発見する。
本研究では,効率的な接続性を推定し,rs-fMRI時系列を分類するために,時空間DAG畳み込みネットワーク(ST-DAGCN)を提案する。
論文 参考訳(メタデータ) (2023-12-16T04:31:51Z) - Beyond the Snapshot: Brain Tokenized Graph Transformer for Longitudinal
Brain Functional Connectome Embedding [4.7719542185589585]
脳機能コネクトーム(FC)をベースとしたグラフニューラルネットワーク(GNN)は、アルツハイマー病(AD)などの神経変性疾患の診断と予後に有用なツールとして登場した。
しかし、これらのモデルは、FC軌跡を特徴付けるのではなく、単一の時点における脳内FC用に調整されている。
本研究は神経変性疾患の診断と予後に応用した,脳内FC軌道埋め込みのための最初の解釈可能な枠組みを提案する。
論文 参考訳(メタデータ) (2023-07-03T08:57:30Z) - Deep Reinforcement Learning Framework for Thoracic Diseases
Classification via Prior Knowledge Guidance [49.87607548975686]
関連疾患に対するラベル付きデータの不足は、正確な診断にとって大きな課題となる。
本稿では,診断エージェントの学習を指導するための事前知識を導入する,新しい深層強化学習フレームワークを提案する。
提案手法の性能はNIHX-ray 14とCheXpertデータセットを用いて実証した。
論文 参考訳(メタデータ) (2023-06-02T01:46:31Z) - A Deep Probabilistic Spatiotemporal Framework for Dynamic Graph Representation Learning with Application to Brain Disorder Identification [5.563162319586206]
機能的接続(FC)を用いた脳コネクトーム分類におけるパターン認識手法の最近の応用は、時間とともに脳コネクトームの認知的側面へとシフトしている。
本稿では,ヒトの自閉症スペクトラム障害(ASD)を同定するために,非時間変動ベイズフレームワークを提案する。
このフレームワークは、動的FCネットワークをまたいだリッチテンポラルパターンをキャプチャするための注意に基づくメッセージパッシングスキームを備えた、空間認識リカレントニューラルネットワークを組み込んでいる。
論文 参考訳(メタデータ) (2023-02-14T18:42:17Z) - Hierarchical Graph Convolutional Network Built by Multiscale Atlases for
Brain Disorder Diagnosis Using Functional Connectivity [48.75665245214903]
本稿では,脳疾患診断のためのマルチスケールFCN解析を行うための新しいフレームワークを提案する。
まず、マルチスケールFCNを計算するために、明確に定義されたマルチスケールアトラスのセットを用いる。
そこで我々は, 生物的に有意な脳階層的関係を多スケールアトラスの領域で利用し, 結節プールを行う。
論文 参考訳(メタデータ) (2022-09-22T04:17:57Z) - BrainIB: Interpretable Brain Network-based Psychiatric Diagnosis with Graph Information Bottleneck [38.281423869037575]
機能的磁気共鳴画像(fMRI)解析のための新しいグラフニューラルネットワーク(GNN)フレームワークBrainIBを提案する。
BrainIBは、脳内の最も情報に富むエッジ(つまり、部分グラフ)を識別し、目に見えないデータにうまく一般化することができる。
論文 参考訳(メタデータ) (2022-05-07T09:35:23Z) - Graph Autoencoders for Embedding Learning in Brain Networks and Major
Depressive Disorder Identification [13.907981019956832]
我々は、大うつ病(MDD)における脳ネットワークの分類のためのグラフ構造に関する非ユークリッド情報を統合するためのグラフ深層学習フレームワークを提案する。
グラフ畳み込みネットワーク(GCN)に基づく新しいグラフオートエンコーダ(GAE)アーキテクチャを設計し、大規模fMRIネットワークの位相構造とノード内容を低次元潜在表現に埋め込む。
我々の新しいフレームワークは、脳障害の診断に識別情報を提供するために、脳ネットワークにグラフを埋め込むことが可能であることを示す。
論文 参考訳(メタデータ) (2021-07-27T14:12:39Z) - G-MIND: An End-to-End Multimodal Imaging-Genetics Framework for
Biomarker Identification and Disease Classification [49.53651166356737]
診断によって誘導される画像データと遺伝データを統合し、解釈可能なバイオマーカーを提供する新しいディープニューラルネットワークアーキテクチャを提案する。
2つの機能的MRI(fMRI)パラダイムとSingle Nucleotide Polymorphism (SNP)データを含む統合失調症の集団研究で本モデルを評価した。
論文 参考訳(メタデータ) (2021-01-27T19:28:04Z) - Emotional EEG Classification using Connectivity Features and
Convolutional Neural Networks [81.74442855155843]
CNNと脳のつながりを利用した新しい分類システムを導入し,その効果を感情映像分類により検証する。
対象映像の感情的特性に関連する脳接続の集中度は分類性能と相関する。
論文 参考訳(メタデータ) (2021-01-18T13:28:08Z) - Context-Aware Refinement Network Incorporating Structural Connectivity
Prior for Brain Midline Delineation [50.868845400939314]
UNetによって生成された特徴ピラミッド表現を洗練・統合するための文脈対応改良ネットワーク(CAR-Net)を提案する。
正中線における脳の構造的接続性を維持するため、我々は新しい接続性レギュラーロスを導入する。
提案手法は, パラメータを少なくし, 4つの評価指標で3つの最先端手法より優れる。
論文 参考訳(メタデータ) (2020-07-10T14:01:20Z) - A Graph Gaussian Embedding Method for Predicting Alzheimer's Disease
Progression with MEG Brain Networks [59.15734147867412]
アルツハイマー病(AD)に関連する機能的脳ネットワークの微妙な変化を特徴付けることは、疾患進行の早期診断と予測に重要である。
我々は、多重グラフガウス埋め込みモデル(MG2G)と呼ばれる新しいディープラーニング手法を開発した。
我々はMG2Gを用いて、MEG脳ネットワークの内在性潜在性次元を検出し、軽度認知障害(MCI)患者のADへの進行を予測し、MCIに関連するネットワーク変化を伴う脳領域を同定した。
論文 参考訳(メタデータ) (2020-05-08T02:29:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。