Renormalization group for Anderson localization on high-dimensional lattices
- URL: http://arxiv.org/abs/2403.01974v3
- Date: Mon, 30 Sep 2024 14:33:20 GMT
- Title: Renormalization group for Anderson localization on high-dimensional lattices
- Authors: Boris L. Altshuler, Vladimir E. Kravtsov, Antonello Scardicchio, Piotr Sierant, Carlo Vanoni,
- Abstract summary: We show how in the delocalized region, including the transition point, the $beta$-function for the fractal dimension $D_1$ evolves smoothly.
We put forward a conjecture about a lower bound for the fractal dimension.
- Score: 0.0
- License:
- Abstract: We discuss the dependence of the critical properties of the Anderson model on the dimension $d$ in the language of $\beta$-function and renormalization group recently introduced in Ref.[arXiv:2306.14965] in the context of Anderson transition on random regular graphs. We show how in the delocalized region, including the transition point, the one-parameter scaling part of the $\beta$-function for the fractal dimension $D_{1}$ evolves smoothly from its $d=2$ form, in which $\beta_2\leq 0$, to its $\beta_\infty\geq 0$ form, which is represented by the regular random graph (RRG) result. We show how the $\epsilon=d-2$ expansion and the $1/d$ expansion around the RRG result can be reconciled and how the initial part of a renormalization group trajectory governed by the irrelevant exponent $y$ depends on dimensionality. We also show how the irrelevant exponent emerges out of the high-gradient terms of expansion in the nonlinear sigma-model and put forward a conjecture about a lower bound for the fractal dimension. The framework introduced here may serve as a basis for investigations of disordered many-body systems and of more general non-equilibrium quantum systems.
Related papers
- Learning with Norm Constrained, Over-parameterized, Two-layer Neural Networks [54.177130905659155]
Recent studies show that a reproducing kernel Hilbert space (RKHS) is not a suitable space to model functions by neural networks.
In this paper, we study a suitable function space for over- parameterized two-layer neural networks with bounded norms.
arXiv Detail & Related papers (2024-04-29T15:04:07Z) - Correlated volumes for extended wavefunctions on a random-regular graph [0.0]
We analyze the ergodic properties of a metallic wavefunction for the Anderson model in a disordered random-regular graph with branching number $k=2.
We extract their corresponding fractal dimensions $D_q$ in the thermodynamic limit together with correlated volumes $N_q$ that control finite-size effects.
arXiv Detail & Related papers (2023-11-13T19:15:18Z) - A Unified Framework for Uniform Signal Recovery in Nonlinear Generative
Compressed Sensing [68.80803866919123]
Under nonlinear measurements, most prior results are non-uniform, i.e., they hold with high probability for a fixed $mathbfx*$ rather than for all $mathbfx*$ simultaneously.
Our framework accommodates GCS with 1-bit/uniformly quantized observations and single index models as canonical examples.
We also develop a concentration inequality that produces tighter bounds for product processes whose index sets have low metric entropy.
arXiv Detail & Related papers (2023-09-25T17:54:19Z) - Measurement-induced phase transition for free fermions above one dimension [46.176861415532095]
Theory of the measurement-induced entanglement phase transition for free-fermion models in $d>1$ dimensions is developed.
Critical point separates a gapless phase with $elld-1 ln ell$ scaling of the second cumulant of the particle number and of the entanglement entropy.
arXiv Detail & Related papers (2023-09-21T18:11:04Z) - Renormalization Group Analysis of the Anderson Model on Random Regular Graphs [0.0]
We present a renormalization group analysis of the problem of Anderson localization on a Random Regular Graph (RRG)
We show that the one- parameter scaling hypothesis is recovered for sufficiently large system sizes for both eigenstates and spectrum observables.
We also explain the non-monotonic behavior of dynamical and spectral quantities as a function of the system size for values of disorder close to the transition.
arXiv Detail & Related papers (2023-06-26T18:00:13Z) - Effective Minkowski Dimension of Deep Nonparametric Regression: Function
Approximation and Statistical Theories [70.90012822736988]
Existing theories on deep nonparametric regression have shown that when the input data lie on a low-dimensional manifold, deep neural networks can adapt to intrinsic data structures.
This paper introduces a relaxed assumption that input data are concentrated around a subset of $mathbbRd$ denoted by $mathcalS$, and the intrinsic dimension $mathcalS$ can be characterized by a new complexity notation -- effective Minkowski dimension.
arXiv Detail & Related papers (2023-06-26T17:13:31Z) - Critical properties of the Anderson transition in random graphs:
two-parameter scaling theory, Kosterlitz-Thouless type flow and many-body
localization [21.281361743023403]
We show that the Anderson transition on graphs displays the same type of flow.
Our work attests to the importance of rare branches along which wave functions have a much larger localization length.
This shows a very strong analogy with the MBL transition.
arXiv Detail & Related papers (2022-09-09T14:50:56Z) - Near-optimal fitting of ellipsoids to random points [68.12685213894112]
A basic problem of fitting an ellipsoid to random points has connections to low-rank matrix decompositions, independent component analysis, and principal component analysis.
We resolve this conjecture up to logarithmic factors by constructing a fitting ellipsoid for some $n = Omega(, d2/mathrmpolylog(d),)$.
Our proof demonstrates feasibility of the least squares construction of Saunderson et al. using a convenient decomposition of a certain non-standard random matrix.
arXiv Detail & Related papers (2022-08-19T18:00:34Z) - Universality in Anderson localization on random graphs with varying
connectivity [0.0]
We show that there should be a non-ergodic region above a given value of disorder $W_E$.
Although no separate $W_E$ exists from $W_C$, the length scale at which fully developed ergodicity is found diverges like $|W-W_C|-1$.
The separation of these two scales at the critical point allows for a true non-ergodic, delocalized region.
arXiv Detail & Related papers (2022-05-29T09:47:39Z) - Anisotropy-mediated reentrant localization [62.997667081978825]
We consider a 2d dipolar system, $d=2$, with the generalized dipole-dipole interaction $sim r-a$, and the power $a$ controlled experimentally in trapped-ion or Rydberg-atom systems.
We show that the spatially homogeneous tilt $beta$ of the dipoles giving rise to the anisotropic dipole exchange leads to the non-trivial reentrant localization beyond the locator expansion.
arXiv Detail & Related papers (2020-01-31T19:00:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.