Using LLMs for the Extraction and Normalization of Product Attribute Values
- URL: http://arxiv.org/abs/2403.02130v4
- Date: Mon, 15 Jul 2024 10:16:14 GMT
- Title: Using LLMs for the Extraction and Normalization of Product Attribute Values
- Authors: Alexander Brinkmann, Nick Baumann, Christian Bizer,
- Abstract summary: This paper explores the potential of using large language models (LLMs) to extract and normalize attribute values from product titles and descriptions.
We introduce the Web Data Commons - Product Attribute Value Extraction (WDC-PAVE) benchmark dataset for our experiments.
- Score: 47.098255866050835
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Product offers on e-commerce websites often consist of a product title and a textual product description. In order to enable features such as faceted product search or to generate product comparison tables, it is necessary to extract structured attribute-value pairs from the unstructured product titles and descriptions and to normalize the extracted values to a single, unified scale for each attribute. This paper explores the potential of using large language models (LLMs), such as GPT-3.5 and GPT-4, to extract and normalize attribute values from product titles and descriptions. We experiment with different zero-shot and few-shot prompt templates for instructing LLMs to extract and normalize attribute-value pairs. We introduce the Web Data Commons - Product Attribute Value Extraction (WDC-PAVE) benchmark dataset for our experiments. WDC-PAVE consists of product offers from 59 different websites which provide schema.org annotations. The offers belong to five different product categories, each with a specific set of attributes. The dataset provides manually verified attribute-value pairs in two forms: (i) directly extracted values and (ii) normalized attribute values. The normalization of the attribute values requires systems to perform the following types of operations: name expansion, generalization, unit of measurement conversion, and string wrangling. Our experiments demonstrate that GPT-4 outperforms the PLM-based extraction methods SU-OpenTag, AVEQA, and MAVEQA by 10%, achieving an F1-score of 91%. For the extraction and normalization of product attribute values, GPT-4 achieves a similar performance to the extraction scenario, while being particularly strong at string wrangling and name expansion.
Related papers
- EIVEN: Efficient Implicit Attribute Value Extraction using Multimodal LLM [52.016009472409166]
EIVEN is a data- and parameter-efficient generative framework for implicit attribute value extraction.
We introduce a novel Learning-by-Comparison technique to reduce model confusion.
Our experiments reveal that EIVEN significantly outperforms existing methods in extracting implicit attribute values.
arXiv Detail & Related papers (2024-04-13T03:15:56Z) - ExtractGPT: Exploring the Potential of Large Language Models for Product Attribute Value Extraction [52.14681890859275]
E-commerce platforms require structured product data in the form of attribute-value pairs.
BERT-based extraction methods require large amounts of task-specific training data.
This paper explores using large language models (LLMs) as a more training-data efficient and robust alternative.
arXiv Detail & Related papers (2023-10-19T07:39:00Z) - AE-smnsMLC: Multi-Label Classification with Semantic Matching and
Negative Label Sampling for Product Attribute Value Extraction [42.79022954630978]
Product attribute value extraction plays an important role for many real-world applications in e-Commerce such as product search and recommendation.
Previous methods treat it as a sequence labeling task that needs more annotation for position of values in the product text.
We propose a classification model with semantic matching and negative label sampling for attribute value extraction.
arXiv Detail & Related papers (2023-10-11T02:22:28Z) - Product Information Extraction using ChatGPT [69.12244027050454]
This paper explores the potential of ChatGPT for extracting attribute/value pairs from product descriptions.
Our results show that ChatGPT achieves a performance similar to a pre-trained language model but requires much smaller amounts of training data and computation for fine-tuning.
arXiv Detail & Related papers (2023-06-23T09:30:01Z) - A Unified Generative Approach to Product Attribute-Value Identification [6.752749933406399]
We explore a generative approach to the product attribute-value identification (PAVI) task.
We finetune a pre-trained generative model, T5, to decode a set of attribute-value pairs as a target sequence from the given product text.
Experimental results confirm that our generation-based approach outperforms the existing extraction and classification-based methods.
arXiv Detail & Related papers (2023-06-09T00:33:30Z) - MAVE: A Product Dataset for Multi-source Attribute Value Extraction [10.429320377835241]
We introduce MAVE, a new dataset to better facilitate research on product attribute value extraction.
MAVE is composed of a curated set of 2.2 million products from Amazon pages, with 3 million attribute-value annotations across 1257 unique categories.
We propose a novel approach that effectively extracts the attribute value from the multi-source product information.
arXiv Detail & Related papers (2021-12-16T06:48:31Z) - AdaTag: Multi-Attribute Value Extraction from Product Profiles with
Adaptive Decoding [55.89773725577615]
We present AdaTag, which uses adaptive decoding to handle attribute extraction.
Our experiments on a real-world e-Commerce dataset show marked improvements over previous methods.
arXiv Detail & Related papers (2021-06-04T07:54:11Z) - Multimodal Joint Attribute Prediction and Value Extraction for
E-commerce Product [40.46223408546036]
Product attribute values are essential in many e-commerce scenarios, such as customer service robots, product recommendations, and product retrieval.
While in the real world, the attribute values of a product are usually incomplete and vary over time, which greatly hinders the practical applications.
We propose a multimodal method to jointly predict product attributes and extract values from textual product descriptions with the help of the product images.
arXiv Detail & Related papers (2020-09-15T15:10:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.