MiM-ISTD: Mamba-in-Mamba for Efficient Infrared Small Target Detection
- URL: http://arxiv.org/abs/2403.02148v4
- Date: Mon, 24 Jun 2024 05:06:56 GMT
- Title: MiM-ISTD: Mamba-in-Mamba for Efficient Infrared Small Target Detection
- Authors: Tianxiang Chen, Zi Ye, Zhentao Tan, Tao Gong, Yue Wu, Qi Chu, Bin Liu, Nenghai Yu, Jieping Ye,
- Abstract summary: We develop a nested structure, Mamba-in-Mamba (MiM-ISTD), for efficient infrared small target detection.
MiM-ISTD is $8 times$ faster than the SOTA method and reduces GPU memory usage by 62.2$%$ when testing on $2048 times 2048$ images.
- Score: 72.46396769642787
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recently, infrared small target detection (ISTD) has made significant progress, thanks to the development of basic models. Specifically, the models combining CNNs with transformers can successfully extract both local and global features. However, the disadvantage of the transformer is also inherited, i.e., the quadratic computational complexity to sequence length. Inspired by the recent basic model with linear complexity for long-distance modeling, Mamba, we explore the potential of this state space model for ISTD task in terms of effectiveness and efficiency in the paper. However, directly applying Mamba achieves suboptimal performances due to the insufficient harnessing of local features, which are imperative for detecting small targets. Instead, we tailor a nested structure, Mamba-in-Mamba (MiM-ISTD), for efficient ISTD. It consists of Outer and Inner Mamba blocks to adeptly capture both global and local features. Specifically, we treat the local patches as "visual sentences" and use the Outer Mamba to explore the global information. We then decompose each visual sentence into sub-patches as "visual words" and use the Inner Mamba to further explore the local information among words in the visual sentence with negligible computational costs. By aggregating the visual word and visual sentence features, our MiM-ISTD can effectively explore both global and local information. Experiments on NUAA-SIRST and IRSTD-1k show the superior accuracy and efficiency of our method. Specifically, MiM-ISTD is $8 \times$ faster than the SOTA method and reduces GPU memory usage by 62.2$\%$ when testing on $2048 \times 2048$ images, overcoming the computation and memory constraints on high-resolution infrared images.
Related papers
- MobileMamba: Lightweight Multi-Receptive Visual Mamba Network [51.33486891724516]
Previous research on lightweight models has primarily focused on CNNs and Transformer-based designs.
We propose the MobileMamba framework, which balances efficiency and performance.
MobileMamba achieves up to 83.6% on Top-1, surpassing existing state-of-the-art methods.
arXiv Detail & Related papers (2024-11-24T18:01:05Z) - Revealing and Mitigating the Local Pattern Shortcuts of Mamba [25.19835905377437]
We introduce a global selection module into the Mamba model to address this issue.
With the introduction of only 4M extra parameters, our approach enables the Mamba model(130M) to achieve a significant improvement on tasks with distributed information.
arXiv Detail & Related papers (2024-10-21T06:42:11Z) - V2M: Visual 2-Dimensional Mamba for Image Representation Learning [68.51380287151927]
Mamba has garnered widespread attention due to its flexible design and efficient hardware performance to process 1D sequences.
Recent studies have attempted to apply Mamba to the visual domain by flattening 2D images into patches and then regarding them as a 1D sequence.
We propose a Visual 2-Dimensional Mamba model as a complete solution, which directly processes image tokens in the 2D space.
arXiv Detail & Related papers (2024-10-14T11:11:06Z) - UNetMamba: An Efficient UNet-Like Mamba for Semantic Segmentation of High-Resolution Remote Sensing Images [4.9571046933387395]
UNetMamba is a UNet-like semantic segmentation model based on Mamba.
Experiments demonstrate that UNetMamba outperforms the state-of-the-art methods with mIoU increased by 0.87% on LoveDA and 0.39% on ISPRS Vaihingen.
arXiv Detail & Related papers (2024-08-21T11:53:53Z) - Bidirectional Gated Mamba for Sequential Recommendation [56.85338055215429]
Mamba, a recent advancement, has exhibited exceptional performance in time series prediction.
We introduce a new framework named Selective Gated Mamba ( SIGMA) for Sequential Recommendation.
Our results indicate that SIGMA outperforms current models on five real-world datasets.
arXiv Detail & Related papers (2024-08-21T09:12:59Z) - LaMamba-Diff: Linear-Time High-Fidelity Diffusion Models Based on Local Attention and Mamba [54.85262314960038]
Local Attentional Mamba blocks capture both global contexts and local details with linear complexity.
Our model exhibits exceptional scalability and surpasses the performance of DiT across various model scales on ImageNet at 256x256 resolution.
Compared to state-of-the-art diffusion models on ImageNet 256x256 and 512x512, our largest model presents notable advantages, such as a reduction of up to 62% GFLOPs.
arXiv Detail & Related papers (2024-08-05T16:39:39Z) - MambaUIE&SR: Unraveling the Ocean's Secrets with Only 2.8 GFLOPs [1.7648680700685022]
Underwater Image Enhancement (UIE) techniques aim to address the problem of underwater image degradation due to light absorption and scattering.
Recent years, both Convolution Neural Network (CNN)-based and Transformer-based methods have been widely explored.
MambaUIE is able to efficiently synthesize global and local information and maintains a very small number of parameters with high accuracy.
arXiv Detail & Related papers (2024-04-22T05:12:11Z) - EfficientVMamba: Atrous Selective Scan for Light Weight Visual Mamba [19.062950348441426]
This work proposes to explore the potential of visual state space models in light-weight model design and introduce a novel efficient model variant dubbed EfficientVMamba.
Our EfficientVMamba integrates a atrous-based selective scan approach by efficient skip sampling, constituting building blocks designed to harness both global and local representational features.
Experimental results show that, EfficientVMamba scales down the computational complexity while yields competitive results across a variety of vision tasks.
arXiv Detail & Related papers (2024-03-15T02:48:47Z) - PointMamba: A Simple State Space Model for Point Cloud Analysis [65.59944745840866]
We propose PointMamba, transferring the success of Mamba, a recent representative state space model (SSM), from NLP to point cloud analysis tasks.
Unlike traditional Transformers, PointMamba employs a linear complexity algorithm, presenting global modeling capacity while significantly reducing computational costs.
arXiv Detail & Related papers (2024-02-16T14:56:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.