MambaUIE&SR: Unraveling the Ocean's Secrets with Only 2.8 GFLOPs
- URL: http://arxiv.org/abs/2404.13884v2
- Date: Fri, 24 May 2024 08:47:19 GMT
- Title: MambaUIE&SR: Unraveling the Ocean's Secrets with Only 2.8 GFLOPs
- Authors: Zhihao Chen, Yiyuan Ge,
- Abstract summary: Underwater Image Enhancement (UIE) techniques aim to address the problem of underwater image degradation due to light absorption and scattering.
Recent years, both Convolution Neural Network (CNN)-based and Transformer-based methods have been widely explored.
MambaUIE is able to efficiently synthesize global and local information and maintains a very small number of parameters with high accuracy.
- Score: 1.7648680700685022
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Underwater Image Enhancement (UIE) techniques aim to address the problem of underwater image degradation due to light absorption and scattering. In recent years, both Convolution Neural Network (CNN)-based and Transformer-based methods have been widely explored. In addition, combining CNN and Transformer can effectively combine global and local information for enhancement. However, this approach is still affected by the secondary complexity of the Transformer and cannot maximize the performance. Recently, the state-space model (SSM) based architecture Mamba has been proposed, which excels in modeling long distances while maintaining linear complexity. This paper explores the potential of this SSM-based model for UIE from both efficiency and effectiveness perspectives. However, the performance of directly applying Mamba is poor because local fine-grained features, which are crucial for image enhancement, cannot be fully utilized. Specifically, we customize the MambaUIE architecture for efficient UIE. Specifically, we introduce visual state space (VSS) blocks to capture global contextual information at the macro level while mining local information at the micro level. Also, for these two kinds of information, we propose a Dynamic Interaction Block (DIB) and Spatial feed-forward Network (SGFN) for intra-block feature aggregation. MambaUIE is able to efficiently synthesize global and local information and maintains a very small number of parameters with high accuracy. Experiments on UIEB datasets show that our method reduces GFLOPs by 67.4% (2.715G) relative to the SOTA method. To the best of our knowledge, this is the first UIE model constructed based on SSM that breaks the limitation of FLOPs on accuracy in UIE. The official repository of MambaUIE at https://github.com/1024AILab/MambaUIE.
Related papers
- MobileMamba: Lightweight Multi-Receptive Visual Mamba Network [51.33486891724516]
Previous research on lightweight models has primarily focused on CNNs and Transformer-based designs.
We propose the MobileMamba framework, which balances efficiency and performance.
MobileMamba achieves up to 83.6% on Top-1, surpassing existing state-of-the-art methods.
arXiv Detail & Related papers (2024-11-24T18:01:05Z) - Microscopic-Mamba: Revealing the Secrets of Microscopic Images with Just 4M Parameters [12.182070604073585]
CNNs struggle with modeling long-range dependencies, limiting their ability to fully utilize semantic information in images.
Transformers are hampered by the complexity of quadratic computations.
We propose a model based on the Mamba architecture: Microscopic-Mamba.
arXiv Detail & Related papers (2024-09-12T10:01:33Z) - UNetMamba: An Efficient UNet-Like Mamba for Semantic Segmentation of High-Resolution Remote Sensing Images [4.9571046933387395]
UNetMamba is a UNet-like semantic segmentation model based on Mamba.
Experiments demonstrate that UNetMamba outperforms the state-of-the-art methods with mIoU increased by 0.87% on LoveDA and 0.39% on ISPRS Vaihingen.
arXiv Detail & Related papers (2024-08-21T11:53:53Z) - LaMamba-Diff: Linear-Time High-Fidelity Diffusion Models Based on Local Attention and Mamba [54.85262314960038]
Local Attentional Mamba blocks capture both global contexts and local details with linear complexity.
Our model exhibits exceptional scalability and surpasses the performance of DiT across various model scales on ImageNet at 256x256 resolution.
Compared to state-of-the-art diffusion models on ImageNet 256x256 and 512x512, our largest model presents notable advantages, such as a reduction of up to 62% GFLOPs.
arXiv Detail & Related papers (2024-08-05T16:39:39Z) - Mamba-UIE: Enhancing Underwater Images with Physical Model Constraint [6.2101866921752285]
In underwater image enhancement (UIE), convolutional neural networks (CNN) have inherent limitations in modeling long-range dependencies.
We propose a physical model constraint-based underwater image enhancement framework, Mamba-UIE.
Our proposed Mamba-UIE outperforms existing state-of-the-art methods, achieving a PSNR of 27.13 and an SSIM of 0.93 on the UIEB dataset.
arXiv Detail & Related papers (2024-07-27T13:22:10Z) - Mamba-based Light Field Super-Resolution with Efficient Subspace Scanning [48.99361249764921]
Transformer-based methods have demonstrated impressive performance in 4D light field (LF) super-resolution.
However, their quadratic complexity hinders the efficient processing of high resolution 4D inputs.
We propose a Mamba-based Light Field Super-Resolution method, named MLFSR, by designing an efficient subspace scanning strategy.
arXiv Detail & Related papers (2024-06-23T11:28:08Z) - MiM-ISTD: Mamba-in-Mamba for Efficient Infrared Small Target Detection [72.46396769642787]
We develop a nested structure, Mamba-in-Mamba (MiM-ISTD), for efficient infrared small target detection.
MiM-ISTD is $8 times$ faster than the SOTA method and reduces GPU memory usage by 62.2$%$ when testing on $2048 times 2048$ images.
arXiv Detail & Related papers (2024-03-04T15:57:29Z) - PointMamba: A Simple State Space Model for Point Cloud Analysis [65.59944745840866]
We propose PointMamba, transferring the success of Mamba, a recent representative state space model (SSM), from NLP to point cloud analysis tasks.
Unlike traditional Transformers, PointMamba employs a linear complexity algorithm, presenting global modeling capacity while significantly reducing computational costs.
arXiv Detail & Related papers (2024-02-16T14:56:13Z) - Magic ELF: Image Deraining Meets Association Learning and Transformer [63.761812092934576]
This paper aims to unify CNN and Transformer to take advantage of their learning merits for image deraining.
A novel multi-input attention module (MAM) is proposed to associate rain removal and background recovery.
Our proposed method (dubbed as ELF) outperforms the state-of-the-art approach (MPRNet) by 0.25 dB on average.
arXiv Detail & Related papers (2022-07-21T12:50:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.