Not All Layers of LLMs Are Necessary During Inference
- URL: http://arxiv.org/abs/2403.02181v3
- Date: Tue, 9 Jul 2024 11:59:01 GMT
- Title: Not All Layers of LLMs Are Necessary During Inference
- Authors: Siqi Fan, Xin Jiang, Xiang Li, Xuying Meng, Peng Han, Shuo Shang, Aixin Sun, Yequan Wang, Zhongyuan Wang,
- Abstract summary: We show that for some tasks, Large Language Models can achieve results comparable to the final output at some intermediate layers.
We propose a simple yet effective algorithm named AdaInfer to adaptively terminate the inference process for an input instance.
- Score: 68.88671495401483
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Due to the large number of parameters, the inference phase of Large Language Models (LLMs) is resource-intensive. However, not all requests posed to LLMs are equally difficult to handle. Through analysis, we show that for some tasks, LLMs can achieve results comparable to the final output at some intermediate layers. That is, not all layers of LLMs are necessary during inference. If we can predict at which layer the inferred results match the final results (produced by evaluating all layers), we could significantly reduce the inference cost. To this end, we propose a simple yet effective algorithm named AdaInfer to adaptively terminate the inference process for an input instance. AdaInfer relies on easily obtainable statistical features and classic classifiers like SVM. Experiments on well-known LLMs like the Llama2 series and OPT, show that AdaInfer can achieve an average of 17.8% pruning ratio, and up to 43% on sentiment tasks, with nearly no performance drop (<1%). Because AdaInfer does not alter LLM parameters, the LLMs incorporated with AdaInfer maintain generalizability across tasks.
Related papers
- Smoothie: Label Free Language Model Routing [39.88041397482366]
Large language models (LLMs) are increasingly used in applications where LLM inputs may span many different tasks.
We propose Smoothie, a weak supervision-inspired routing approach that requires no labeled data.
We find that Smoothie's LLM quality-scores correlate with ground-truth model quality.
arXiv Detail & Related papers (2024-12-06T01:06:37Z) - A Comprehensive Evaluation of Large Language Models on Aspect-Based Sentiment Analysis [26.505386645322506]
Large Language Models (LLMs) have garnered increasing attention in the field of natural language processing.
In this paper, we shed light on a comprehensive evaluation of LLMs in the ABSA field, involving 13 datasets, 8 ABSA subtasks, and 6 LLMs.
Our experiments demonstrate that LLMs achieve a new state-of-the-art performance compared to fine-tuned Small Language Models (SLMs) in the fine-tuning-dependent paradigm.
arXiv Detail & Related papers (2024-12-03T08:54:17Z) - SkillAggregation: Reference-free LLM-Dependent Aggregation [14.46141987797362]
Large Language Models (LLMs) are increasingly used to assess NLP tasks.
Recent work suggests using multiple LLMs as judges yields improved performance.
This work focuses on aggregating predictions from multiple systems where no reference labels are available.
arXiv Detail & Related papers (2024-10-14T07:13:47Z) - AlphaPruning: Using Heavy-Tailed Self Regularization Theory for Improved Layer-wise Pruning of Large Language Models [94.82766517752418]
We propose AlphaPruning, which uses shape metrics to allocate layerwise sparsity ratios in a more theoretically principled manner.
Our results show that AlphaPruning prunes LLaMA-7B to 80% sparsity while maintaining reasonable perplexity, marking a first in the literature on LLMs.
arXiv Detail & Related papers (2024-10-14T03:35:11Z) - Skipping Computations in Multimodal LLMs [63.29737699997859]
This study investigates redundancy in Multimodal Large Language Models (MLLMs) during inference.
We propose different methods to skip computations, such as skipping entire blocks, FFN or self-attention layers.
Our findings validate that significant amount of computations can be avoided at inference time.
arXiv Detail & Related papers (2024-10-12T09:21:45Z) - Order Matters in Hallucination: Reasoning Order as Benchmark and Reflexive Prompting for Large-Language-Models [0.0]
Large language models (LLMs) have generated significant attention since their inception, finding applications across various academic and industrial domains.
LLMs often suffer from the "hallucination problem", where outputs, though grammatically and logically coherent, lack factual accuracy or are entirely fabricated.
arXiv Detail & Related papers (2024-08-09T14:34:32Z) - SELF-GUIDE: Better Task-Specific Instruction Following via Self-Synthetic Finetuning [70.21358720599821]
Large language models (LLMs) hold the promise of solving diverse tasks when provided with appropriate natural language prompts.
We propose SELF-GUIDE, a multi-stage mechanism in which we synthesize task-specific input-output pairs from the student LLM.
We report an absolute improvement of approximately 15% for classification tasks and 18% for generation tasks in the benchmark's metrics.
arXiv Detail & Related papers (2024-07-16T04:41:58Z) - Dynamic Sparse No Training: Training-Free Fine-tuning for Sparse LLMs [67.38165028487242]
We introduce Dynamic Sparse No Training (DSnoT), a training-free fine-tuning approach to fine-tune large language models (LLMs)
Inspired by the Dynamic Sparse Training, DSnoT minimizes the reconstruction error between the dense and sparse LLMs.
Our paper offers fresh insights into how to fine-tune sparse LLMs in an efficient training-free manner and open new venues to scale the great potential of sparsity to LLMs.
arXiv Detail & Related papers (2023-10-13T07:38:52Z) - Response Length Perception and Sequence Scheduling: An LLM-Empowered LLM
Inference Pipeline [22.08897444328099]
Large language models (LLMs) have revolutionized the field of AI, demonstrating unprecedented capacity across various tasks.
In this paper, we propose an efficient LLM inference pipeline that harnesses the power of LLMs.
arXiv Detail & Related papers (2023-05-22T15:36:06Z) - LLM-Pruner: On the Structural Pruning of Large Language Models [65.02607075556742]
Large language models (LLMs) have shown remarkable capabilities in language understanding and generation.
We tackle the compression of LLMs within the bound of two constraints: being task-agnostic and minimizing the reliance on the original training dataset.
Our method, named LLM-Pruner, adopts structural pruning that selectively removes non-critical coupled structures.
arXiv Detail & Related papers (2023-05-19T12:10:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.