Dynamical observation of non-trivial doublon formation using a quantum
computer
- URL: http://arxiv.org/abs/2403.02229v1
- Date: Mon, 4 Mar 2024 17:16:15 GMT
- Title: Dynamical observation of non-trivial doublon formation using a quantum
computer
- Authors: Biswajit Paul and Tapan Mishra
- Abstract summary: Dynamical formation of doublons or onsite repulsively bound pairs of particles on a lattice is non-trivial.
We show the signatures of doublon formation in a quantum computing experiment by simulating the continuous time quantum walk.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Dynamical formation of doublons or onsite repulsively bound pairs of
particles on a lattice is a highly non-trivial phenomenon. In this work we show
the signatures of doublon formation in a quantum computing experiment by
simulating the continuous time quantum walk in the framework of the one
dimensional extended Fermi-Hubbard model. By considering two up-component and
one down-component particles initially created at the three neighbouring sites
at the middle of the lattice and allowing intra- (inter-) component nearest
neighbour (onsite) interactions we show the formation a stable onsite doublon
in the quantum walk. The probability of such doublon formation is more (less)
if the hopping strength of the down particle is weaker (stronger) compared to
the up particle. On the contrary, for an initial doublon along with a free up
particle, the stability of the doublon is more prominent than the doublon
dissociation in the dynamics irrespective of the hopping asymmetry between the
two components. We first numerically obtain the signatures of the stable
doublon formation in the dynamics and then observe them using Noisy
Intermediate-Scale Quantum (NISQ) devices.
Related papers
- Observation of string breaking on a (2 + 1)D Rydberg quantum simulator [59.63568901264298]
We report the observation of string breaking in synthetic quantum matter using a programmable quantum simulator.
Our work paves a way to explore phenomena in high-energy physics using programmable quantum simulators.
arXiv Detail & Related papers (2024-10-21T22:33:16Z) - Many-body effects in the out-of-equilibrium dynamics of a composite
bosonic Josephson junction [0.0]
We study the out-of-equilibrium many-body quantum dynamics of an interacting Bose gas trapped in a one-dimensional composite double-well potential.
We showed that the universality of fragmentation with respect to the number of particles corresponding to a particular interaction strength is also exhibited by the higher-order orbitals.
arXiv Detail & Related papers (2023-03-26T19:44:45Z) - Bound state of distant photons in waveguide quantum electrodynamics [137.6408511310322]
Quantum correlations between distant particles remain enigmatic since the birth of quantum mechanics.
We predict a novel kind of bound quantum state in the simplest one-dimensional setup of two interacting particles in a box.
Such states could be realized in the waveguide quantum electrodynamics platform.
arXiv Detail & Related papers (2023-03-17T09:27:02Z) - Photon generation and entanglement in a double superconducting cavity [105.54048699217668]
We study the dynamical Casimir effect in a double superconducting cavity in a quantum electrodynamics architecture.
We study the creation of photons when the walls oscillate harmonically with a small amplitude.
arXiv Detail & Related papers (2022-07-18T16:43:47Z) - Formation of robust bound states of interacting microwave photons [148.37607455646454]
One of the hallmarks of interacting systems is the formation of multi-particle bound states.
We develop a high fidelity parameterizable fSim gate that implements the periodic quantum circuit of the spin-1/2 XXZ model.
By placing microwave photons in adjacent qubit sites, we study the propagation of these excitations and observe their bound nature for up to 5 photons.
arXiv Detail & Related papers (2022-06-10T17:52:29Z) - Energetical self-organization of a few strongly interacting particles [0.0]
We study the quantum self-organization of a few interacting particles with strong short-range interactions.
The energy of the system is determined by the number of bonds between particles that lie on adjacent sites.
arXiv Detail & Related papers (2022-03-25T12:23:51Z) - Localization and melting of interfaces in the two-dimensional quantum
Ising model [0.0]
We study the non-equilibrium evolution of coexisting ferromagnetic domains in the two-dimensional quantum Ising model.
We demonstrate that the quantum-fluctuating interface delimiting a large bubble can be studied as an effective one-dimensional system.
arXiv Detail & Related papers (2022-03-17T17:48:51Z) - Observation-dependent suppression and enhancement of two-photon
coincidences by tailored losses [68.8204255655161]
Hong-Ou-Mandel (HOM) effect can lead to a perfect suppression of two-particle coincidences between the output ports of a balanced beam splitter.
In this work, we demonstrate experimentally that the two-particle coincidence statistics of two bosons can instead be seamlessly tuned to substantial enhancement.
Our findings reveal a new approach to harnessing non-Hermitian settings for the manipulation of multi-particle quantum states.
arXiv Detail & Related papers (2021-05-12T06:47:35Z) - Bosonic Quantum Dynamics Following Colliding Potential Wells [0.0]
We investigate the correlated non-equilibrium quantum dynamics of two bosons confined in two colliding and uniformly accelerated Gaussian wells.
Despite the comparatively weak interaction strengths employed in this work, we identify strong inter-particle correlations by analyzing the corresponding Von Neumann entropy.
arXiv Detail & Related papers (2021-02-02T14:59:08Z) - Mesoscopic quantum superposition states of weakly-coupled matter-wave
solitons [58.720142291102135]
We establish quantum features of an atomic soliton Josephson junction (SJJ) device.
We show that the SJJ-model in quantum domain exhibits unusual features due to its effective nonlinear strength proportional to the square of total particle number.
We have shown that the obtained quantum state is more resistant to few particle losses from the condensates if tiny components of entangled Fock states are present.
arXiv Detail & Related papers (2020-11-26T09:26:19Z) - Spectral Structure and Many-Body Dynamics of Ultracold Bosons in a
Double-Well [0.0]
We examine the spectral structure and many-body dynamics of two and three repulsively interacting bosons trapped in a one-dimensional double-well.
We specifically explore the dynamical behaviour of the particles launched either at the single particle ground state or saddle point energy.
We complement these results by a characterisation of the cross-over from diabatic to quasi-adiabatic evolution under finite-time switching of the potential barrier.
arXiv Detail & Related papers (2020-02-03T19:00:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.