論文の概要: KnowPhish: Large Language Models Meet Multimodal Knowledge Graphs for Enhancing Reference-Based Phishing Detection
- arxiv url: http://arxiv.org/abs/2403.02253v2
- Date: Sat, 15 Jun 2024 11:34:45 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-19 05:36:50.876074
- Title: KnowPhish: Large Language Models Meet Multimodal Knowledge Graphs for Enhancing Reference-Based Phishing Detection
- Title(参考訳): KnowPhish: 参照ベースのフィッシング検出を支援するマルチモーダル知識グラフを備えた大規模言語モデル
- Authors: Yuexin Li, Chengyu Huang, Shumin Deng, Mei Lin Lock, Tri Cao, Nay Oo, Hoon Wei Lim, Bryan Hooi,
- Abstract要約: 各ブランドに関する情報が豊富な20万のブランドを含む,自動知識収集パイプラインを提案する。
KnowPhishは、既存の参照ベースのフィッシング検出器の性能を高めるために使用できる。
結果として得られたマルチモーダルフィッシング検出手法であるKnowPhish Detectorは,ロゴの有無にかかわらずフィッシングWebページを検出することができる。
- 参考スコア(独自算出の注目度): 36.014171641453615
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Phishing attacks have inflicted substantial losses on individuals and businesses alike, necessitating the development of robust and efficient automated phishing detection approaches. Reference-based phishing detectors (RBPDs), which compare the logos on a target webpage to a known set of logos, have emerged as the state-of-the-art approach. However, a major limitation of existing RBPDs is that they rely on a manually constructed brand knowledge base, making it infeasible to scale to a large number of brands, which results in false negative errors due to the insufficient brand coverage of the knowledge base. To address this issue, we propose an automated knowledge collection pipeline, using which we collect a large-scale multimodal brand knowledge base, KnowPhish, containing 20k brands with rich information about each brand. KnowPhish can be used to boost the performance of existing RBPDs in a plug-and-play manner. A second limitation of existing RBPDs is that they solely rely on the image modality, ignoring useful textual information present in the webpage HTML. To utilize this textual information, we propose a Large Language Model (LLM)-based approach to extract brand information of webpages from text. Our resulting multimodal phishing detection approach, KnowPhish Detector (KPD), can detect phishing webpages with or without logos. We evaluate KnowPhish and KPD on a manually validated dataset, and a field study under Singapore's local context, showing substantial improvements in effectiveness and efficiency compared to state-of-the-art baselines.
- Abstract(参考訳): フィッシング攻撃は個人や企業にも大きな損失をもたらし、堅牢で効率的な自動フィッシング検出手法の開発を必要としている。
参照ベースのフィッシング検出器(RBPD)は、ターゲットWebページのロゴと既知のロゴのセットを比較し、最先端のアプローチとして登場した。
しかし、既存のRBPDの最大の制限は、手動で構築されたブランドナレッジベースに依存しており、多数のブランドにスケールすることは不可能であり、知識ベースが不十分なブランドカバレッジのために誤りを犯す可能性があることである。
この問題に対処するために,我々は大規模なマルチモーダルブランド知識ベースであるKnowPhishを収集する自動知識収集パイプラインを提案する。
KnowPhishは既存のRBPDのパフォーマンスをプラグアンドプレイで向上するために使用することができる。
既存のRBPDの2つめの制限は、画像のモダリティのみに依存しており、WebページHTMLに存在する有用なテキスト情報を無視していることである。
このテキスト情報を活用するために,テキストからWebページのブランド情報を抽出するLarge Language Model (LLM)に基づくアプローチを提案する。
結果として得られたマルチモーダルフィッシング検出手法であるKnowPhish Detector(KPD)は,ロゴの有無に関わらずフィッシングWebページを検出することができる。
我々は,KnowPhishとKPDを手作業による検証データセットで評価し,シンガポールの現地文脈下でのフィールドスタディにより,最先端のベースラインに比べて有効性と効率が著しく向上したことを示した。
関連論文リスト
- Position Paper: Think Globally, React Locally -- Bringing Real-time Reference-based Website Phishing Detection on macOS [0.4962561299282114]
最近のフィッシング攻撃の急増は、従来の反フィッシング・ブラックリストのアプローチの有効性を弱め続けている。
デバイス上でのフィッシング防止ソリューションは、ローカルで高速なフィッシング検出を提供するため、人気が高まっている。
コンピュータビジョンとデバイス上の機械学習モデルを組み合わせてウェブサイトをリアルタイムで分析するフィッシング検出ソリューションを提案する。
論文 参考訳(メタデータ) (2024-05-28T14:46:03Z) - A Sophisticated Framework for the Accurate Detection of Phishing Websites [0.0]
フィッシング(英: Phishing)は、ますます洗練されたサイバー攻撃形態であり、世界中の企業に巨額の経済的損害を与えている。
本稿では,フィッシングサイトを検出するための包括的手法を提案する。
特徴選択, 欲求アルゴリズム, クロスバリデーション, 深層学習を組み合わせて, 洗練された積み重ねアンサンブルを構築している。
論文 参考訳(メタデータ) (2024-03-13T14:26:25Z) - Mitigating Bias in Machine Learning Models for Phishing Webpage Detection [0.8050163120218178]
フィッシングはよく知られたサイバー攻撃であり、フィッシングウェブページの作成と対応するURLの拡散を中心に展開している。
独自の属性を蒸留し、予測モデルを構築することで、ゼロデイフィッシングURLをプリエンプティブに分類する様々な技術が利用可能である。
この提案は、フィッシング検出ソリューション内の永続的な課題、特に包括的なデータセットを組み立てる予備フェーズに集中している。
本稿では,MLモデルのバイアスを軽減するために開発されたツールの形で,潜在的な解決策を提案する。
論文 参考訳(メタデータ) (2024-01-16T13:45:54Z) - Phishing Website Detection through Multi-Model Analysis of HTML Content [0.0]
本研究では,HTMLコンテンツに着目した高度な検出モデルを導入することにより,フィッシングのプレス問題に対処する。
提案手法は、構造化表データのための特殊多層パーセプトロン(MLP)モデルと、テキストの特徴を解析するための2つの事前学習自然言語処理(NLP)モデルを統合する。
2つのNLPと1つのモデルであるMultiText-LPの融合により、96.80 F1スコアと97.18精度スコアが得られた。
論文 参考訳(メタデータ) (2024-01-09T21:08:13Z) - Improving Cross-dataset Deepfake Detection with Deep Information
Decomposition [57.284370468207214]
ディープフェイク技術は、セキュリティと社会的信頼に重大な脅威をもたらす。
既存の検出方法は、クロスデータセットのシナリオに直面した場合、パフォーマンスの急激な低下に悩まされる。
本稿では,深層情報分解(DID)フレームワークを提案する。
論文 参考訳(メタデータ) (2023-09-30T12:30:25Z) - An Unforgeable Publicly Verifiable Watermark for Large Language Models [84.2805275589553]
現在の透かし検出アルゴリズムは、透かし生成プロセスで使用される秘密鍵を必要としており、公開検出中にセキュリティ違反や偽造の影響を受ける。
両段階で同じキーを使用するのではなく、2つの異なるニューラルネットワークを用いて透かしの生成と検出を行う。
論文 参考訳(メタデータ) (2023-07-30T13:43:27Z) - Did You Train on My Dataset? Towards Public Dataset Protection with
Clean-Label Backdoor Watermarking [54.40184736491652]
本稿では,公開データの保護のための一般的な枠組みとして機能するバックドアベースの透かし手法を提案する。
データセットに少数の透かしサンプルを挿入することにより、我々のアプローチは、ディフェンダーが設定した秘密関数を暗黙的に学習することを可能にする。
この隠れた機能は、データセットを違法に使用するサードパーティモデルを追跡するための透かしとして使用できる。
論文 参考訳(メタデータ) (2023-03-20T21:54:30Z) - Discriminative Semantic Feature Pyramid Network with Guided Anchoring
for Logo Detection [52.36825190893928]
我々は,DSFP-GAを用いた識別的セマンティック特徴ピラミッドネットワークという新しい手法を提案する。
我々のアプローチは主に差別的セマンティック特徴ピラミッド(DSFP)とガイドアンコリング(GA)から構成される。
論文 参考訳(メタデータ) (2021-08-31T11:59:00Z) - An Effective and Robust Detector for Logo Detection [58.448716977297565]
一部の攻撃者は、よく訓練されたロゴ検出モデルを侵害で騙している。
本稿では,2回検討する機構に基づく新しいロゴ検出手法を提案する。
我々は,デテクトRSアルゴリズムを,等化損失関数,マルチスケール変換,および逆データ拡張を備えたカスケードスキーマに拡張する。
論文 参考訳(メタデータ) (2021-08-01T10:17:53Z) - PhishGAN: Data Augmentation and Identification of Homoglpyh Attacks [0.0]
ホモグリフ攻撃(Homoglyph attack)は、ハッカーがフィッシングを行うのに使われる一般的なテクニックである。実際のフィッシングと視覚的に類似したドメイン名やリンクは、攻撃を難読化するためにペニーコードによって生成される。
本稿では,ヒエログリフの画像を生成するために,条件付き生成適応ネットワーク(GAN)であるPhishGANを用いる方法を示す。
論文 参考訳(メタデータ) (2020-06-24T13:59:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。