Key-Point-Driven Data Synthesis with its Enhancement on Mathematical Reasoning
- URL: http://arxiv.org/abs/2403.02333v3
- Date: Wed, 8 May 2024 01:48:46 GMT
- Title: Key-Point-Driven Data Synthesis with its Enhancement on Mathematical Reasoning
- Authors: Yiming Huang, Xiao Liu, Yeyun Gong, Zhibin Gou, Yelong Shen, Nan Duan, Weizhu Chen,
- Abstract summary: Key-Point-Driven Data Synthesis (KPDDS) is a novel data synthesis framework that synthesizes question-answer pairs.
KPDDS ensures the generation of novel questions with rigorous quality control and substantial scalability.
We present KPMath, an extensive synthetic dataset tailored for mathematical reasoning, comprising over 800K question-answer pairs.
- Score: 110.80663974060624
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large language models (LLMs) have shown great potential in complex reasoning tasks, yet their performance is often hampered by the scarcity of high-quality and reasoning-focused training datasets. Addressing this challenge, we propose Key-Point-Driven Data Synthesis (KPDDS), a novel data synthesis framework that synthesizes question-answer pairs by leveraging key points and exemplar practices from authentic data sources. KPDDS ensures the generation of novel questions with rigorous quality control and substantial scalability. As a result, we present KPMath, an extensive synthetic dataset tailored for mathematical reasoning, comprising over 800K question-answer pairs. Utilizing KPMath and augmenting it with additional reasoning-intensive corpora, we create the comprehensive KPMath-Plus dataset. The Qwen1.5-72B model, fine-tuned on KPMath-Plus, achieves 87.0% PASS@1 accuracy on GSM8K and 58.3% on MATH, surpassing competitors in the 7B to 70B range and best commercial models like GPT-4 across multiple math reasoning datasets.
Related papers
- Unleashing Reasoning Capability of LLMs via Scalable Question Synthesis from Scratch [28.519536719973317]
ScaleQuest is a scalable and novel data synthesis method.
It generates questions from scratch without the need for seed data with complex augmentation constraints.
It can universally increase the performance of mainstream open-source models.
arXiv Detail & Related papers (2024-10-24T12:42:04Z) - SIaM: Self-Improving Code-Assisted Mathematical Reasoning of Large Language Models [54.78329741186446]
We propose a novel paradigm that uses a code-based critic model to guide steps including question-code data construction, quality control, and complementary evaluation.
Experiments across both in-domain and out-of-domain benchmarks in English and Chinese demonstrate the effectiveness of the proposed paradigm.
arXiv Detail & Related papers (2024-08-28T06:33:03Z) - Skywork-Math: Data Scaling Laws for Mathematical Reasoning in Large Language Models -- The Story Goes On [55.449818944278526]
We introduce the Skywork-Math model series, supervised fine-tuned (SFT) on common 7B language models.
Skywork-Math 7B has achieved impressive accuracies of 51.2% on the competition-level MATH benchmark.
We provide several practical takeaways to enhance math reasoning abilities in LLMs for both research and industry applications.
arXiv Detail & Related papers (2024-07-11T09:56:51Z) - Exploring the Mystery of Influential Data for Mathematical Reasoning [127.61978092016228]
We propose a Quality-aware Diverse Selection (QaDS) strategy for mathematical reasoning.
A comparison with other selection strategies validates the superiority of QaDS.
With OpenMathMix, we achieve a state-of-the-art 48.8% accuracy on MATH with 7B base model.
arXiv Detail & Related papers (2024-04-01T12:01:06Z) - DACO: Towards Application-Driven and Comprehensive Data Analysis via Code Generation [83.30006900263744]
Data analysis is a crucial analytical process to generate in-depth studies and conclusive insights.
We propose to automatically generate high-quality answer annotations leveraging the code-generation capabilities of LLMs.
Our DACO-RL algorithm is evaluated by human annotators to produce more helpful answers than SFT model in 57.72% cases.
arXiv Detail & Related papers (2024-03-04T22:47:58Z) - MathGenie: Generating Synthetic Data with Question Back-translation for Enhancing Mathematical Reasoning of LLMs [38.127313175508746]
MathGenie is a novel method for generating diverse and reliable math problems from a small-scale problem-solution dataset.
Various pretrained models, ranging from 7B to 70B, are trained on the newly curated data to test the effectiveness of the proposed augmentation technique.
MathGenieLM-InternLM2 achieves an accuracy of 87.7% on GSM8K and 55.7% on MATH, securing the best overall score among open-source language models.
arXiv Detail & Related papers (2024-02-26T07:17:25Z) - TarGEN: Targeted Data Generation with Large Language Models [51.87504111286201]
TarGEN is a multi-step prompting strategy for generating high-quality synthetic datasets.
We augment TarGEN with a method known as self-correction empowering LLMs to rectify inaccurately labeled instances.
A comprehensive analysis of the synthetic dataset compared to the original dataset reveals similar or higher levels of dataset complexity and diversity.
arXiv Detail & Related papers (2023-10-27T03:32:17Z) - Exploiting Asymmetry for Synthetic Training Data Generation: SynthIE and
the Case of Information Extraction [28.51694365908817]
This work shows that useful data can be synthetically generated even for tasks that cannot be solved directly by large language models.
We synthetically generate a dataset of 1.8M data points, establish its superior quality compared to existing datasets in a human evaluation.
arXiv Detail & Related papers (2023-03-07T18:48:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.