論文の概要: Twisting Lids Off with Two Hands
- arxiv url: http://arxiv.org/abs/2403.02338v1
- Date: Mon, 4 Mar 2024 18:59:30 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-06 17:27:39.009791
- Title: Twisting Lids Off with Two Hands
- Title(参考訳): ツイストを2つの手で離す
- Authors: Toru Lin, Zhao-Heng Yin, Haozhi Qi, Pieter Abbeel, Jitendra Malik
- Abstract要約: 深層強化学習を用いたシミュレーションで訓練された政策は,実世界へ効果的に移行可能であることを示す。
我々の研究は、深層強化学習とsim-to-realトランスファーが相まって、前例のない複雑さの操作問題に対処する上で有望なアプローチであることを示す証拠となる。
- 参考スコア(独自算出の注目度): 88.20584085182857
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Manipulating objects with two multi-fingered hands has been a long-standing
challenge in robotics, attributed to the contact-rich nature of many
manipulation tasks and the complexity inherent in coordinating a
high-dimensional bimanual system. In this work, we consider the problem of
twisting lids of various bottle-like objects with two hands, and demonstrate
that policies trained in simulation using deep reinforcement learning can be
effectively transferred to the real world. With novel engineering insights into
physical modeling, real-time perception, and reward design, the policy
demonstrates generalization capabilities across a diverse set of unseen
objects, showcasing dynamic and dexterous behaviors. Our findings serve as
compelling evidence that deep reinforcement learning combined with sim-to-real
transfer remains a promising approach for addressing manipulation problems of
unprecedented complexity.
- Abstract(参考訳): 2本の指で物体を操作することは、ロボット工学における長年の課題であり、多くの操作タスクの接触に富む性質と、高次元のバイマニュアルシステムのコーディネートに固有の複雑さに起因している。
本研究では, 各種ボトル状物体の蓋を両手でねじる問題を考察し, 深部強化学習を用いたシミュレーションで訓練した政策を実世界へ効果的に移行できることを実証する。
物理モデリング、リアルタイム知覚、報酬設計に関する新しい工学的洞察によって、このポリシーは、様々な未知のオブジェクトセットにまたがる一般化能力を示し、動的かつデクスター的な振る舞いを示す。
深層強化学習とsim-to-real転送が相まって,前例のない複雑性の操作問題に対処するための有望なアプローチである,という説得力のある証拠となる。
関連論文リスト
- FunGrasp: Functional Grasping for Diverse Dexterous Hands [8.316017819784603]
本稿では,FunGraspを紹介した。FunGraspは,各種ロボットハンドを機能的に把握するシステムである。
頑健なsim-to-real転送を実現するために,特権学習,システム識別,ドメインランダム化,重力補償など,いくつかの手法を用いる。
論文 参考訳(メタデータ) (2024-11-24T07:30:54Z) - Learning the Generalizable Manipulation Skills on Soft-body Tasks via Guided Self-attention Behavior Cloning Policy [9.345203561496552]
GP2E行動クローニングポリシーは、ソフトボディタスクから汎用的な操作スキルを学ぶためのエージェントを誘導することができる。
本研究は,Embodied AIモデルの一般化能力を向上する手法の可能性を明らかにするものである。
論文 参考訳(メタデータ) (2024-10-08T07:31:10Z) - Learning Visuotactile Skills with Two Multifingered Hands [80.99370364907278]
マルチフィンガーハンドとバイソタクティブルデータを用いたバイマニアルシステムを用いて,人間の実演からの学習を探索する。
以上の結果から,バイスオタクティブルデータからの両指多指操作における有望な進歩が示唆された。
論文 参考訳(メタデータ) (2024-04-25T17:59:41Z) - Bi-Manual Block Assembly via Sim-to-Real Reinforcement Learning [24.223788665601678]
2つのxArm6ロボットがU字型組立タスクを、シミュレーションで90%以上、実際のハードウェアで50%の確率で解決する。
以上の結果から,本システムは今後,深部RLおよびSim2Real転送バイマニュアルポリアの研究を刺激していきたいと願っている。
論文 参考訳(メタデータ) (2023-03-27T01:25:24Z) - Dexterous Manipulation from Images: Autonomous Real-World RL via Substep
Guidance [71.36749876465618]
本稿では,ユーザが新しいタスクを定義するための"プログラミング不要"なアプローチを提供する,視覚に基づくデクスタラスな操作システムについて述べる。
本システムには,最終タスクと中間タスクを画像例で定義するためのフレームワークが組み込まれている。
実世界における多段階物体操作の4指ロボットハンドラーによる実験結果
論文 参考訳(メタデータ) (2022-12-19T22:50:40Z) - DeXtreme: Transfer of Agile In-hand Manipulation from Simulation to
Reality [64.51295032956118]
我々は人型ロボットの手で頑健な操作を行える政策を訓練する。
本研究は,各種ハードウェアおよびシミュレータのデクスタラス操作におけるsim-to-real転送の可能性を再確認する。
論文 参考訳(メタデータ) (2022-10-25T01:51:36Z) - ASE: Large-Scale Reusable Adversarial Skill Embeddings for Physically
Simulated Characters [123.88692739360457]
汎用運動技術により、人間は複雑な作業を行うことができる。
これらのスキルは、新しいタスクを学ぶときの振る舞いを導くための強力な先駆者も提供します。
物理シミュレーション文字のための汎用的で再利用可能なスキル埋め込みを学習するためのフレームワークを提案する。
論文 参考訳(メタデータ) (2022-05-04T06:13:28Z) - COCOI: Contact-aware Online Context Inference for Generalizable
Non-planar Pushing [87.7257446869134]
一般的なコンタクトリッチな操作問題は、ロボット工学における長年の課題である。
深層強化学習は、ロボット操作タスクの解決に大きな可能性を示している。
動的プロパティのコンテキスト埋め込みをオンラインにエンコードする深層RL法であるCOCOIを提案する。
論文 参考訳(メタデータ) (2020-11-23T08:20:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。