Classification of the Fashion-MNIST Dataset on a Quantum Computer
- URL: http://arxiv.org/abs/2403.02405v1
- Date: Mon, 4 Mar 2024 19:01:14 GMT
- Title: Classification of the Fashion-MNIST Dataset on a Quantum Computer
- Authors: Kevin Shen, Bernhard Jobst, Elvira Shishenina, Frank Pollmann
- Abstract summary: Conventional methods for encoding classical data into quantum computers are too costly and limit the scale of feasible experiments on current hardware.
We propose an improved variational algorithm that prepares the encoded data using circuits that fit the native gate set and topology of currently available quantum computers.
We deploy simple quantum variational classifiers trained on the encoded dataset on a current quantum computer ibmq-kolkata and achieve moderate accuracies.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The potential impact of quantum machine learning algorithms on industrial
applications remains an exciting open question. Conventional methods for
encoding classical data into quantum computers are not only too costly for a
potential quantum advantage in the algorithms but also severely limit the scale
of feasible experiments on current hardware. Therefore, recent works, despite
claiming the near-term suitability of their algorithms, do not provide
experimental benchmarking on standard machine learning datasets. We attempt to
solve the data encoding problem by improving a recently proposed variational
algorithm [1] that approximately prepares the encoded data, using
asymptotically shallow circuits that fit the native gate set and topology of
currently available quantum computers. We apply the improved algorithm to
encode the Fashion-MNIST dataset [2], which can be directly used in future
empirical studies of quantum machine learning algorithms. We deploy simple
quantum variational classifiers trained on the encoded dataset on a current
quantum computer ibmq-kolkata [3] and achieve moderate accuracies, providing a
proof of concept for the near-term usability of our data encoding method.
Related papers
- Training quantum machine learning models on cloud without uploading the data [0.0]
We propose a method that runs the parameterized quantum circuits before encoding the input data.
This enables a dataset owner to train machine learning models on quantum cloud platforms.
It is also capable of encoding a vast amount of data effectively at a later time using classical computations.
arXiv Detail & Related papers (2024-09-06T20:14:52Z) - Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
Given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties?
We prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d.
We devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to scaling in many practical settings.
arXiv Detail & Related papers (2024-08-22T08:21:28Z) - The curse of random quantum data [62.24825255497622]
We quantify the performances of quantum machine learning in the landscape of quantum data.
We find that the training efficiency and generalization capabilities in quantum machine learning will be exponentially suppressed with the increase in qubits.
Our findings apply to both the quantum kernel method and the large-width limit of quantum neural networks.
arXiv Detail & Related papers (2024-08-19T12:18:07Z) - Quadratic speed-ups in quantum kernelized binary classification [1.3812010983144802]
Several quantum machine learning algorithms that use quantum kernels as a measure of similarities between data have emerged to perform binary classification on datasets encoded as quantum states.
We propose new quantum circuits for the QKCs in which the number of qubits is reduced by one, and the circuit depth is reduced linearly with respect to the number of sample data.
We verify the quadratic speed-up over previous methods through numerical simulations on the Iris dataset.
arXiv Detail & Related papers (2024-03-26T07:39:48Z) - Quantum-Assisted Simulation: A Framework for Developing Machine Learning Models in Quantum Computing [0.0]
We investigate the history of quantum computing, examine existing QML algorithms, and present a simplified procedure for setting up simulations of QML algorithms.
We conduct simulations on a dataset using both traditional machine learning and quantum machine learning approaches.
arXiv Detail & Related papers (2023-11-17T07:33:42Z) - Drastic Circuit Depth Reductions with Preserved Adversarial Robustness
by Approximate Encoding for Quantum Machine Learning [0.5181797490530444]
We implement methods for the efficient preparation of quantum states representing encoded image data using variational, genetic and matrix product state based algorithms.
Results show that these methods can approximately prepare states to a level suitable for QML using circuits two orders of magnitude shallower than a standard state preparation implementation.
arXiv Detail & Related papers (2023-09-18T01:49:36Z) - Deep Quantum Error Correction [73.54643419792453]
Quantum error correction codes (QECC) are a key component for realizing the potential of quantum computing.
In this work, we efficiently train novel emphend-to-end deep quantum error decoders.
The proposed method demonstrates the power of neural decoders for QECC by achieving state-of-the-art accuracy.
arXiv Detail & Related papers (2023-01-27T08:16:26Z) - A didactic approach to quantum machine learning with a single qubit [68.8204255655161]
We focus on the case of learning with a single qubit, using data re-uploading techniques.
We implement the different proposed formulations in toy and real-world datasets using the qiskit quantum computing SDK.
arXiv Detail & Related papers (2022-11-23T18:25:32Z) - Concentration of Data Encoding in Parameterized Quantum Circuits [7.534037755267707]
Variational quantum algorithms have been acknowledged as a leading strategy to realize near-term quantum advantages in meaningful tasks.
In this paper, we make progress by considering the common data encoding strategies based on parameterized quantum circuits.
We prove that, under reasonable assumptions, the distance between the average encoded state and the maximally mixed state could be explicitly upper-bounded.
arXiv Detail & Related papers (2022-06-16T16:09:40Z) - Quantum Federated Learning with Quantum Data [87.49715898878858]
Quantum machine learning (QML) has emerged as a promising field that leans on the developments in quantum computing to explore large complex machine learning problems.
This paper proposes the first fully quantum federated learning framework that can operate over quantum data and, thus, share the learning of quantum circuit parameters in a decentralized manner.
arXiv Detail & Related papers (2021-05-30T12:19:27Z) - Electronic structure with direct diagonalization on a D-Wave quantum
annealer [62.997667081978825]
This work implements the general Quantum Annealer Eigensolver (QAE) algorithm to solve the molecular electronic Hamiltonian eigenvalue-eigenvector problem on a D-Wave 2000Q quantum annealer.
We demonstrate the use of D-Wave hardware for obtaining ground and electronically excited states across a variety of small molecular systems.
arXiv Detail & Related papers (2020-09-02T22:46:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.