Quadratic speed-ups in quantum kernelized binary classification
- URL: http://arxiv.org/abs/2403.17453v1
- Date: Tue, 26 Mar 2024 07:39:48 GMT
- Title: Quadratic speed-ups in quantum kernelized binary classification
- Authors: Jungyun Lee, Daniel K. Park,
- Abstract summary: Several quantum machine learning algorithms that use quantum kernels as a measure of similarities between data have emerged to perform binary classification on datasets encoded as quantum states.
We propose new quantum circuits for the QKCs in which the number of qubits is reduced by one, and the circuit depth is reduced linearly with respect to the number of sample data.
We verify the quadratic speed-up over previous methods through numerical simulations on the Iris dataset.
- Score: 1.3812010983144802
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Classification is at the core of data-driven prediction and decision-making, representing a fundamental task in supervised machine learning. Recently, several quantum machine learning algorithms that use quantum kernels as a measure of similarities between data have emerged to perform binary classification on datasets encoded as quantum states. The potential advantages of quantum kernels arise from the ability of quantum computers to construct kernels that are more effective than their classical counterparts in capturing patterns in data or computing kernels more efficiently. However, existing quantum kernel-based classification algorithms do not harness the capability of having data samples in quantum superposition for additional enhancements. In this work, we demonstrate how such capability can be leveraged in quantum kernelized binary classifiers (QKCs) through Quantum Amplitude Estimation (QAE) for quadratic speed-up. Additionally, we propose new quantum circuits for the QKCs in which the number of qubits is reduced by one, and the circuit depth is reduced linearly with respect to the number of sample data. We verify the quadratic speed-up over previous methods through numerical simulations on the Iris dataset.
Related papers
- Quantum machine learning for multiclass classification beyond kernel methods [21.23851138896271]
We propose a quantum algorithm that demonstrates that quantum kernel methods enhance the efficiency of multiclass classification in real-world applications.
The results from quantum simulations reveal that the quantum algorithm outperforms its classical counterpart in handling six real-world classification problems.
arXiv Detail & Related papers (2024-11-05T08:58:30Z) - Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
Given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties?
We prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d.
We devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to scaling in many practical settings.
arXiv Detail & Related papers (2024-08-22T08:21:28Z) - The curse of random quantum data [62.24825255497622]
We quantify the performances of quantum machine learning in the landscape of quantum data.
We find that the training efficiency and generalization capabilities in quantum machine learning will be exponentially suppressed with the increase in qubits.
Our findings apply to both the quantum kernel method and the large-width limit of quantum neural networks.
arXiv Detail & Related papers (2024-08-19T12:18:07Z) - Supervised binary classification of small-scale digits images with a trapped-ion quantum processor [56.089799129458875]
We show that a quantum processor can correctly solve the basic classification task considered.
With the increase of the capabilities quantum processors, they can become a useful tool for machine learning.
arXiv Detail & Related papers (2024-06-17T18:20:51Z) - Power Characterization of Noisy Quantum Kernels [52.47151453259434]
We show that noise may make quantum kernel methods to only have poor prediction capability, even when the generalization error is small.
We provide a crucial warning to employ noisy quantum kernel methods for quantum computation.
arXiv Detail & Related papers (2024-01-31T01:02:16Z) - QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEA is an in-time sparse exploration for noise-adaptive quantum circuits.
It aims to achieve two key objectives: (1) implicit circuits capacity during training and (2) noise robustness.
Our method establishes state-of-the-art results with only half the number of quantum gates and 2x time saving of circuit executions.
arXiv Detail & Related papers (2024-01-10T22:33:00Z) - Quantum Imitation Learning [74.15588381240795]
We propose quantum imitation learning (QIL) with a hope to utilize quantum advantage to speed up IL.
We develop two QIL algorithms, quantum behavioural cloning (Q-BC) and quantum generative adversarial imitation learning (Q-GAIL)
Experiment results demonstrate that both Q-BC and Q-GAIL can achieve comparable performance compared to classical counterparts.
arXiv Detail & Related papers (2023-04-04T12:47:35Z) - Machine learning applications for noisy intermediate-scale quantum
computers [0.0]
We develop and study three quantum machine learning applications suitable for NISQ computers.
These algorithms are variational in nature and use parameterised quantum circuits (PQCs) as the underlying quantum machine learning model.
We propose a variational algorithm in the area of approximate quantum cloning, where the data becomes quantum in nature.
arXiv Detail & Related papers (2022-05-19T09:26:57Z) - Optimal quantum kernels for small data classification [0.0]
We show an algorithm for constructing quantum kernels for support vector machines that adapts quantum gate sequences to data.
The performance of the resulting quantum models for classification problems with a small number of training points significantly exceeds that of optimized classical models.
arXiv Detail & Related papers (2022-03-25T18:26:44Z) - Compact quantum kernel-based binary classifier [2.0684234025249717]
We present the simplest quantum circuit for constructing a kernel-based binary classifier.
The number of qubits is reduced by two and the number of steps is reduced linearly.
Our design also provides a straightforward way to handle an imbalanced data set.
arXiv Detail & Related papers (2022-02-04T14:30:53Z) - Robust quantum classifier with minimal overhead [0.8057006406834467]
Several quantum algorithms for binary classification based on the kernel method have been proposed.
These algorithms rely on estimating an expectation value, which in turn requires an expensive quantum data encoding procedure to be repeated many times.
We show that the kernel-based binary classification can be performed with a single-qubit measurement regardless of the number and the dimension of the data.
arXiv Detail & Related papers (2021-04-16T14:51:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.