The Emotion Dynamics of Literary Novels
- URL: http://arxiv.org/abs/2403.02474v1
- Date: Mon, 4 Mar 2024 20:39:21 GMT
- Title: The Emotion Dynamics of Literary Novels
- Authors: Krishnapriya Vishnubhotla, Adam Hammond, Graeme Hirst, Saif M.
Mohammad
- Abstract summary: We use character dialogue to distinguish between the emotion arcs of the narration and the various characters.
Our findings show that the narration and the dialogue largely express disparate emotions through the course of a novel.
- Score: 33.974558021764395
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Stories are rich in the emotions they exhibit in their narratives and evoke
in the readers. The emotional journeys of the various characters within a story
are central to their appeal. Computational analysis of the emotions of novels,
however, has rarely examined the variation in the emotional trajectories of the
different characters within them, instead considering the entire novel to
represent a single story arc. In this work, we use character dialogue to
distinguish between the emotion arcs of the narration and the various
characters. We analyze the emotion arcs of the various characters in a dataset
of English literary novels using the framework of Utterance Emotion Dynamics.
Our findings show that the narration and the dialogue largely express disparate
emotions through the course of a novel, and that the commonalities or
differences in the emotional arcs of stories are more accurately captured by
those associated with individual characters.
Related papers
- Language Models (Mostly) Do Not Consider Emotion Triggers When Predicting Emotion [87.18073195745914]
We investigate how well human-annotated emotion triggers correlate with features deemed salient in their prediction of emotions.
Using EmoTrigger, we evaluate the ability of large language models to identify emotion triggers.
Our analysis reveals that emotion triggers are largely not considered salient features for emotion prediction models, instead there is intricate interplay between various features and the task of emotion detection.
arXiv Detail & Related papers (2023-11-16T06:20:13Z) - Dynamic Causal Disentanglement Model for Dialogue Emotion Detection [77.96255121683011]
We propose a Dynamic Causal Disentanglement Model based on hidden variable separation.
This model effectively decomposes the content of dialogues and investigates the temporal accumulation of emotions.
Specifically, we propose a dynamic temporal disentanglement model to infer the propagation of utterances and hidden variables.
arXiv Detail & Related papers (2023-09-13T12:58:09Z) - Experiencer-Specific Emotion and Appraisal Prediction [13.324006587838523]
Emotion classification in NLP assigns emotions to texts, such as sentences or paragraphs.
We focus on the experiencers of events, and assign an emotion (if any holds) to each of them.
Our experiencer-aware models of emotions and appraisals outperform the experiencer-agnostic baselines.
arXiv Detail & Related papers (2022-10-21T16:04:27Z) - Speech Synthesis with Mixed Emotions [77.05097999561298]
We propose a novel formulation that measures the relative difference between the speech samples of different emotions.
We then incorporate our formulation into a sequence-to-sequence emotional text-to-speech framework.
At run-time, we control the model to produce the desired emotion mixture by manually defining an emotion attribute vector.
arXiv Detail & Related papers (2022-08-11T15:45:58Z) - x-enVENT: A Corpus of Event Descriptions with Experiencer-specific
Emotion and Appraisal Annotations [13.324006587838523]
We argue that a classification setup for emotion analysis should be performed in an integrated manner, including the different semantic roles that participate in an emotion episode.
Based on appraisal theories in psychology, we compile an English corpus of written event descriptions.
The descriptions depict emotion-eliciting circumstances, and they contain mentions of people who responded emotionally.
arXiv Detail & Related papers (2022-03-21T12:02:06Z) - ViNTER: Image Narrative Generation with Emotion-Arc-Aware Transformer [59.05857591535986]
We propose a model called ViNTER to generate image narratives that focus on time series representing varying emotions as "emotion arcs"
We present experimental results of both manual and automatic evaluations.
arXiv Detail & Related papers (2022-02-15T10:53:08Z) - Emotion Dynamics in Movie Dialogues [25.289525325790414]
We introduce a framework to track emotion dynamics through one's utterances.
We use this approach to trace emotional arcs of movie characters.
We analyze thousands of such character arcs to test hypotheses that inform our broader understanding of stories.
arXiv Detail & Related papers (2021-03-01T23:02:16Z) - Controllable Multi-Character Psychology-Oriented Story Generation [28.054245616281023]
We present a novel model-based attention mechanism that we call SoCP (Storytelling of multi-Character Psychology)
We show that the proposed model can generate stories considering the changes in the psychological state of different characters.
Experiments show that with SoCP, the generated stories follow the psychological state for each character according to both automatic and human evaluations.
arXiv Detail & Related papers (2020-10-11T12:05:00Z) - Annotation of Emotion Carriers in Personal Narratives [69.07034604580214]
We are interested in the problem of understanding personal narratives (PN) - spoken or written - recollections of facts, events, and thoughts.
In PN, emotion carriers are the speech or text segments that best explain the emotional state of the user.
This work proposes and evaluates an annotation model for identifying emotion carriers in spoken personal narratives.
arXiv Detail & Related papers (2020-02-27T15:42:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.