Koopman operators with intrinsic observables in rigged reproducing kernel Hilbert spaces
- URL: http://arxiv.org/abs/2403.02524v2
- Date: Thu, 14 Mar 2024 17:04:37 GMT
- Title: Koopman operators with intrinsic observables in rigged reproducing kernel Hilbert spaces
- Authors: Isao Ishikawa, Yuka Hashimoto, Masahiro Ikeda, Yoshinobu Kawahara,
- Abstract summary: This paper presents a novel approach for estimating the Koopman operator defined on a reproducing kernel Hilbert space (RKHS) and its spectra.
We propose an estimation method, what we call Jet Dynamic Mode Decomposition (JetDMD), leveraging the intrinsic structure of RKHS and the geometric notion known as jets.
This method refines the traditional Extended Dynamic Mode Decomposition (EDMD) in accuracy, especially in the numerical estimation of eigenvalues.
- Score: 16.00267662259167
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper presents a novel approach for estimating the Koopman operator defined on a reproducing kernel Hilbert space (RKHS) and its spectra. We propose an estimation method, what we call Jet Dynamic Mode Decomposition (JetDMD), leveraging the intrinsic structure of RKHS and the geometric notion known as jets to enhance the estimation of the Koopman operator. This method refines the traditional Extended Dynamic Mode Decomposition (EDMD) in accuracy, especially in the numerical estimation of eigenvalues. This paper proves JetDMD's superiority through explicit error bounds and convergence rate for special positive definite kernels, offering a solid theoretical foundation for its performance. We also delve into the spectral analysis of the Koopman operator, proposing the notion of extended Koopman operator within a framework of rigged Hilbert space. This notion leads to a deeper understanding of estimated Koopman eigenfunctions and capturing them outside the original function space. Through the theory of rigged Hilbert space, our study provides a principled methodology to analyze the estimated spectrum and eigenfunctions of Koopman operators, and enables eigendecomposition within a rigged RKHS. We also propose a new effective method for reconstructing the dynamical system from temporally-sampled trajectory data of the dynamical system with solid theoretical guarantee. We conduct several numerical simulations using the van der Pol oscillator, the Duffing oscillator, the H\'enon map, and the Lorenz attractor, and illustrate the performance of JetDMD with clear numerical computations of eigenvalues and accurate predictions of the dynamical systems.
Related papers
- Multiplicative Dynamic Mode Decomposition [4.028503203417233]
We introduce Multiplicative Dynamic Mode Decomposition (MultDMD), which enforces the multiplicative structure inherent in the Koopman operator within its finite-dimensional approximation.
MultDMD presents a structured approach to finite-dimensional approximations and can accurately reflect the spectral properties of the Koopman operator.
We elaborate on the theoretical framework of MultDMD, detailing its formulation, optimization strategy, and convergence properties.
arXiv Detail & Related papers (2024-05-08T18:09:16Z) - Rigged Dynamic Mode Decomposition: Data-Driven Generalized Eigenfunction Decompositions for Koopman Operators [0.0]
We introduce the Rigged Dynamic Mode Decomposition (Rigged DMD) algorithm, which computes generalized eigenfunction decompositions of Koopman operators.
Rigged DMD addresses challenges with a data-driven methodology that approximates the Koopman operator's resolvent and its generalized eigenfunctions.
We provide examples, including systems with a Lebesgue spectrum, integrable Hamiltonian systems, the Lorenz system, and a high-Reynolds number lid-driven flow in a two-dimensional square cavity.
arXiv Detail & Related papers (2024-05-01T18:00:18Z) - On the Convergence of Hermitian Dynamic Mode Decomposition [4.028503203417233]
We study the convergence of Hermitian Dynamic Mode Decomposition to the spectral properties of self-adjoint Koopman operators.
We numerically demonstrate our results by applying them to two-dimensional Schr"odinger equations.
arXiv Detail & Related papers (2024-01-06T11:13:16Z) - Spectral Decomposition Representation for Reinforcement Learning [100.0424588013549]
We propose an alternative spectral method, Spectral Decomposition Representation (SPEDER), that extracts a state-action abstraction from the dynamics without inducing spurious dependence on the data collection policy.
A theoretical analysis establishes the sample efficiency of the proposed algorithm in both the online and offline settings.
An experimental investigation demonstrates superior performance over current state-of-the-art algorithms across several benchmarks.
arXiv Detail & Related papers (2022-08-19T19:01:30Z) - Learning Dynamical Systems via Koopman Operator Regression in
Reproducing Kernel Hilbert Spaces [52.35063796758121]
We formalize a framework to learn the Koopman operator from finite data trajectories of the dynamical system.
We link the risk with the estimation of the spectral decomposition of the Koopman operator.
Our results suggest RRR might be beneficial over other widely used estimators.
arXiv Detail & Related papers (2022-05-27T14:57:48Z) - Reinforcement Learning from Partial Observation: Linear Function Approximation with Provable Sample Efficiency [111.83670279016599]
We study reinforcement learning for partially observed decision processes (POMDPs) with infinite observation and state spaces.
We make the first attempt at partial observability and function approximation for a class of POMDPs with a linear structure.
arXiv Detail & Related papers (2022-04-20T21:15:38Z) - The kernel perspective on dynamic mode decomposition [4.051099980410583]
This manuscript revisits theoretical assumptions concerning dynamic mode decomposition (DMD) of Koopman operators.
Counterexamples that illustrate restrictiveness of the assumptions are provided for each of the assumptions.
New framework for DMD requires only densely defined Koopman operators over RKHSs.
arXiv Detail & Related papers (2021-05-31T21:20:01Z) - Estimating Koopman operators for nonlinear dynamical systems: a
nonparametric approach [77.77696851397539]
The Koopman operator is a mathematical tool that allows for a linear description of non-linear systems.
In this paper we capture their core essence as a dual version of the same framework, incorporating them into the Kernel framework.
We establish a strong link between kernel methods and Koopman operators, leading to the estimation of the latter through Kernel functions.
arXiv Detail & Related papers (2021-03-25T11:08:26Z) - Neural Dynamic Mode Decomposition for End-to-End Modeling of Nonlinear
Dynamics [49.41640137945938]
We propose a neural dynamic mode decomposition for estimating a lift function based on neural networks.
With our proposed method, the forecast error is backpropagated through the neural networks and the spectral decomposition.
Our experiments demonstrate the effectiveness of our proposed method in terms of eigenvalue estimation and forecast performance.
arXiv Detail & Related papers (2020-12-11T08:34:26Z) - Kernel-based approximation of the Koopman generator and Schr\"odinger
operator [0.3093890460224435]
We show how eigenfunctions can be estimated by solving auxiliary matrix eigenvalue problems.
The resulting algorithms are applied to molecular dynamics and quantum chemistry examples.
arXiv Detail & Related papers (2020-05-27T08:23:29Z) - On dissipative symplectic integration with applications to
gradient-based optimization [77.34726150561087]
We propose a geometric framework in which discretizations can be realized systematically.
We show that a generalization of symplectic to nonconservative and in particular dissipative Hamiltonian systems is able to preserve rates of convergence up to a controlled error.
arXiv Detail & Related papers (2020-04-15T00:36:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.