Deep Common Feature Mining for Efficient Video Semantic Segmentation
- URL: http://arxiv.org/abs/2403.02689v1
- Date: Tue, 5 Mar 2024 06:17:59 GMT
- Title: Deep Common Feature Mining for Efficient Video Semantic Segmentation
- Authors: Yaoyan Zheng, Hongyu Yang, Di Huang
- Abstract summary: We present Deep Common Feature Mining (DCFM) for video semantic segmentation.
DCFM explicitly decomposes features into two complementary components.
We show that our method has a superior balance between accuracy and efficiency.
- Score: 29.054945307605816
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent advancements in video semantic segmentation have made substantial
progress by exploiting temporal correlations. Nevertheless, persistent
challenges, including redundant computation and the reliability of the feature
propagation process, underscore the need for further innovation. In response,
we present Deep Common Feature Mining (DCFM), a novel approach strategically
designed to address these challenges by leveraging the concept of feature
sharing. DCFM explicitly decomposes features into two complementary components.
The common representation extracted from a key-frame furnishes essential
high-level information to neighboring non-key frames, allowing for direct
re-utilization without feature propagation. Simultaneously, the independent
feature, derived from each video frame, captures rapidly changing information,
providing frame-specific clues crucial for segmentation. To achieve such
decomposition, we employ a symmetric training strategy tailored for sparsely
annotated data, empowering the backbone to learn a robust high-level
representation enriched with common information. Additionally, we incorporate a
self-supervised loss function to reinforce intra-class feature similarity and
enhance temporal consistency. Experimental evaluations on the VSPW and
Cityscapes datasets demonstrate the effectiveness of our method, showing a
superior balance between accuracy and efficiency.
Related papers
- Modality-Collaborative Transformer with Hybrid Feature Reconstruction
for Robust Emotion Recognition [35.15390769958969]
We propose a unified framework, Modality-Collaborative Transformer with Hybrid Feature Reconstruction (MCT-HFR)
MCT-HFR consists of a novel attention-based encoder which concurrently extracts and dynamically balances the intra- and inter-modality relations.
During model training, LFI leverages complete features as supervisory signals to recover local missing features, while GFA is designed to reduce the global semantic gap between pairwise complete and incomplete representations.
arXiv Detail & Related papers (2023-12-26T01:59:23Z) - Learning Cross-modality Information Bottleneck Representation for
Heterogeneous Person Re-Identification [61.49219876388174]
Visible-Infrared person re-identification (VI-ReID) is an important and challenging task in intelligent video surveillance.
Existing methods mainly focus on learning a shared feature space to reduce the modality discrepancy between visible and infrared modalities.
We present a novel mutual information and modality consensus network, namely CMInfoNet, to extract modality-invariant identity features.
arXiv Detail & Related papers (2023-08-29T06:55:42Z) - Learning Image Deraining Transformer Network with Dynamic Dual
Self-Attention [46.11162082219387]
This paper proposes an effective image deraining Transformer with dynamic dual self-attention (DDSA)
Specifically, we only select the most useful similarity values based on top-k approximate calculation to achieve sparse attention.
In addition, we also develop a novel spatial-enhanced feed-forward network (SEFN) to further obtain a more accurate representation for achieving high-quality derained results.
arXiv Detail & Related papers (2023-08-15T13:59:47Z) - Feature Decoupling-Recycling Network for Fast Interactive Segmentation [79.22497777645806]
Recent interactive segmentation methods iteratively take source image, user guidance and previously predicted mask as the input.
We propose the Feature Decoupling-Recycling Network (FDRN), which decouples the modeling components based on their intrinsic discrepancies.
arXiv Detail & Related papers (2023-08-07T12:26:34Z) - Deeply-Coupled Convolution-Transformer with Spatial-temporal
Complementary Learning for Video-based Person Re-identification [91.56939957189505]
We propose a novel spatial-temporal complementary learning framework named Deeply-Coupled Convolution-Transformer (DCCT) for high-performance video-based person Re-ID.
Our framework could attain better performances than most state-of-the-art methods.
arXiv Detail & Related papers (2023-04-27T12:16:44Z) - On Exploring Pose Estimation as an Auxiliary Learning Task for
Visible-Infrared Person Re-identification [66.58450185833479]
In this paper, we exploit Pose Estimation as an auxiliary learning task to assist the VI-ReID task in an end-to-end framework.
By jointly training these two tasks in a mutually beneficial manner, our model learns higher quality modality-shared and ID-related features.
Experimental results on two benchmark VI-ReID datasets show that the proposed method consistently improves state-of-the-art methods by significant margins.
arXiv Detail & Related papers (2022-01-11T09:44:00Z) - Dynamic Feature Regularized Loss for Weakly Supervised Semantic
Segmentation [37.43674181562307]
We propose a new regularized loss which utilizes both shallow and deep features that are dynamically updated.
Our approach achieves new state-of-the-art performances, outperforming other approaches by a significant margin with more than 6% mIoU increase.
arXiv Detail & Related papers (2021-08-03T05:11:00Z) - Robust Representation Learning via Perceptual Similarity Metrics [18.842322467828502]
Contrastive Input Morphing (CIM) is a representation learning framework that learns input-space transformations of the data.
We show that CIM is complementary to other mutual information-based representation learning techniques.
arXiv Detail & Related papers (2021-06-11T21:45:44Z) - Adversarial Feature Augmentation and Normalization for Visual
Recognition [109.6834687220478]
Recent advances in computer vision take advantage of adversarial data augmentation to ameliorate the generalization ability of classification models.
Here, we present an effective and efficient alternative that advocates adversarial augmentation on intermediate feature embeddings.
We validate the proposed approach across diverse visual recognition tasks with representative backbone networks.
arXiv Detail & Related papers (2021-03-22T20:36:34Z) - Cross-modality Person re-identification with Shared-Specific Feature
Transfer [112.60513494602337]
Cross-modality person re-identification (cm-ReID) is a challenging but key technology for intelligent video analysis.
We propose a novel cross-modality shared-specific feature transfer algorithm (termed cm-SSFT) to explore the potential of both the modality-shared information and the modality-specific characteristics.
arXiv Detail & Related papers (2020-02-28T00:18:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.