Residual Prior-driven Frequency-aware Network for Image Fusion
- URL: http://arxiv.org/abs/2507.06735v2
- Date: Thu, 24 Jul 2025 13:57:08 GMT
- Title: Residual Prior-driven Frequency-aware Network for Image Fusion
- Authors: Guan Zheng, Xue Wang, Wenhua Qian, Peng Liu, Runzhuo Ma,
- Abstract summary: Image fusion aims to integrate complementary information across modalities to generate high-quality fused images.<n>We propose a Residual Prior-driven Frequency-aware Network, termed as RPFNet.
- Score: 6.90874640835234
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Image fusion aims to integrate complementary information across modalities to generate high-quality fused images, thereby enhancing the performance of high-level vision tasks. While global spatial modeling mechanisms show promising results, constructing long-range feature dependencies in the spatial domain incurs substantial computational costs. Additionally, the absence of ground-truth exacerbates the difficulty of capturing complementary features effectively. To tackle these challenges, we propose a Residual Prior-driven Frequency-aware Network, termed as RPFNet. Specifically, RPFNet employs a dual-branch feature extraction framework: the Residual Prior Module (RPM) extracts modality-specific difference information from residual maps, thereby providing complementary priors for fusion; the Frequency Domain Fusion Module (FDFM) achieves efficient global feature modeling and integration through frequency-domain convolution. Additionally, the Cross Promotion Module (CPM) enhances the synergistic perception of local details and global structures through bidirectional feature interaction. During training, we incorporate an auxiliary decoder and saliency structure loss to strengthen the model's sensitivity to modality-specific differences. Furthermore, a combination of adaptive weight-based frequency contrastive loss and SSIM loss effectively constrains the solution space, facilitating the joint capture of local details and global features while ensuring the retention of complementary information. Extensive experiments validate the fusion performance of RPFNet, which effectively integrates discriminative features, enhances texture details and salient objects, and can effectively facilitate the deployment of the high-level vision task.
Related papers
- Adaptive Frequency Enhancement Network for Remote Sensing Image Semantic Segmentation [33.49405456617909]
We propose the Adaptive Frequency Enhancement Network (AFENet), which integrates two key components: the Adaptive Frequency and Spatial feature Interaction Module (AFSIM) and the Selective feature Fusion Module (SFM)<n>AFSIM dynamically separates and modulates high- and low-frequency features according to the content of the input image.<n>SFM selectively fuses global context and local detailed features to enhance the network's representation capability.
arXiv Detail & Related papers (2025-04-03T14:42:49Z) - FUSE: Label-Free Image-Event Joint Monocular Depth Estimation via Frequency-Decoupled Alignment and Degradation-Robust Fusion [63.87313550399871]
Image-event joint depth estimation methods leverage complementary modalities for robust perception, yet face challenges in generalizability.<n>We propose Self-supervised Transfer (PST) and FrequencyDe-coupled Fusion module (FreDF)<n>PST establishes cross-modal knowledge transfer through latent space alignment with image foundation models.<n>FreDF explicitly decouples high-frequency edge features from low-frequency structural components, resolving modality-specific frequency mismatches.
arXiv Detail & Related papers (2025-03-25T15:04:53Z) - Unleashing Correlation and Continuity for Hyperspectral Reconstruction from RGB Images [64.80875911446937]
We propose a Correlation and Continuity Network (CCNet) for HSI reconstruction from RGB images.<n>For the correlation of local spectrum, we introduce the Group-wise Spectral Correlation Modeling (GrSCM) module.<n>For the continuity of global spectrum, we design the Neighborhood-wise Spectral Continuity Modeling (NeSCM) module.
arXiv Detail & Related papers (2025-01-02T15:14:40Z) - Accelerated Multi-Contrast MRI Reconstruction via Frequency and Spatial Mutual Learning [50.74383395813782]
We propose a novel Frequency and Spatial Mutual Learning Network (FSMNet) to explore global dependencies across different modalities.
The proposed FSMNet achieves state-of-the-art performance for the Multi-Contrast MR Reconstruction task with different acceleration factors.
arXiv Detail & Related papers (2024-09-21T12:02:47Z) - MMR-Mamba: Multi-Modal MRI Reconstruction with Mamba and Spatial-Frequency Information Fusion [17.084083262801737]
We propose MMR-Mamba, a novel framework that thoroughly and efficiently integrates multi-modal features for MRI reconstruction.
Specifically, we first design a Target modality-guided Cross Mamba (TCM) module in the spatial domain.
Then, we introduce a Selective Frequency Fusion (SFF) module to efficiently integrate global information in the Fourier domain.
arXiv Detail & Related papers (2024-06-27T07:30:54Z) - Deep Common Feature Mining for Efficient Video Semantic Segmentation [25.851900402539467]
We present Deep Common Feature Mining (DCFM) for video semantic segmentation.<n>DCFM explicitly decomposes features into two complementary components.<n>We incorporate a self-supervised loss function to reinforce intra-class feature similarity and enhance temporal consistency.
arXiv Detail & Related papers (2024-03-05T06:17:59Z) - Modality-Collaborative Transformer with Hybrid Feature Reconstruction
for Robust Emotion Recognition [35.15390769958969]
We propose a unified framework, Modality-Collaborative Transformer with Hybrid Feature Reconstruction (MCT-HFR)
MCT-HFR consists of a novel attention-based encoder which concurrently extracts and dynamically balances the intra- and inter-modality relations.
During model training, LFI leverages complete features as supervisory signals to recover local missing features, while GFA is designed to reduce the global semantic gap between pairwise complete and incomplete representations.
arXiv Detail & Related papers (2023-12-26T01:59:23Z) - Rotated Multi-Scale Interaction Network for Referring Remote Sensing Image Segmentation [63.15257949821558]
Referring Remote Sensing Image (RRSIS) is a new challenge that combines computer vision and natural language processing.
Traditional Referring Image (RIS) approaches have been impeded by the complex spatial scales and orientations found in aerial imagery.
We introduce the Rotated Multi-Scale Interaction Network (RMSIN), an innovative approach designed for the unique demands of RRSIS.
arXiv Detail & Related papers (2023-12-19T08:14:14Z) - Transformer-based Context Condensation for Boosting Feature Pyramids in
Object Detection [77.50110439560152]
Current object detectors typically have a feature pyramid (FP) module for multi-level feature fusion (MFF)
We propose a novel and efficient context modeling mechanism that can help existing FPs deliver better MFF results.
In particular, we introduce a novel insight that comprehensive contexts can be decomposed and condensed into two types of representations for higher efficiency.
arXiv Detail & Related papers (2022-07-14T01:45:03Z) - MSO: Multi-Feature Space Joint Optimization Network for RGB-Infrared
Person Re-Identification [35.97494894205023]
RGB-infrared cross-modality person re-identification (ReID) task aims to recognize the images of the same identity between the visible modality and the infrared modality.
Existing methods mainly use a two-stream architecture to eliminate the discrepancy between the two modalities in the final common feature space.
We present a novel multi-feature space joint optimization (MSO) network, which can learn modality-sharable features in both the single-modality space and the common space.
arXiv Detail & Related papers (2021-10-21T16:45:23Z) - Global Context-Aware Progressive Aggregation Network for Salient Object
Detection [117.943116761278]
We propose a novel network named GCPANet to integrate low-level appearance features, high-level semantic features, and global context features.
We show that the proposed approach outperforms the state-of-the-art methods both quantitatively and qualitatively.
arXiv Detail & Related papers (2020-03-02T04:26:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.