Causal Prompting: Debiasing Large Language Model Prompting based on Front-Door Adjustment
- URL: http://arxiv.org/abs/2403.02738v2
- Date: Wed, 22 May 2024 16:21:38 GMT
- Title: Causal Prompting: Debiasing Large Language Model Prompting based on Front-Door Adjustment
- Authors: Congzhi Zhang, Linhai Zhang, Jialong Wu, Deyu Zhou, Yulan He,
- Abstract summary: A novel causal prompting method based on front-door adjustment is proposed to effectively mitigate Large Language Models (LLMs) biases.
Experimental results show that the proposed causal prompting approach achieves excellent performance across seven natural language processing datasets.
- Score: 32.12998469814097
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Despite the notable advancements of existing prompting methods, such as In-Context Learning and Chain-of-Thought for Large Language Models (LLMs), they still face challenges related to various biases. Traditional debiasing methods primarily focus on the model training stage, including approaches based on data augmentation and reweighting, yet they struggle with the complex biases inherent in LLMs. To address such limitations, the causal relationship behind the prompting methods is uncovered using a structural causal model, and a novel causal prompting method based on front-door adjustment is proposed to effectively mitigate LLMs biases. In specific, causal intervention is achieved by designing the prompts without accessing the parameters and logits of LLMs. The chain-of-thought generated by LLM is employed as the mediator variable and the causal effect between input prompts and output answers is calculated through front-door adjustment to mitigate model biases. Moreover, to accurately represent the chain-of-thoughts and estimate the causal effects, contrastive learning is used to fine-tune the encoder of chain-of-thought by aligning its space with that of the LLM. Experimental results show that the proposed causal prompting approach achieves excellent performance across seven natural language processing datasets on both open-source and closed-source LLMs.
Related papers
- Provenance: A Light-weight Fact-checker for Retrieval Augmented LLM Generation Output [49.893971654861424]
We present a light-weight approach for detecting nonfactual outputs from retrieval-augmented generation (RAG)
We compute a factuality score that can be thresholded to yield a binary decision.
Our experiments show high area under the ROC curve (AUC) across a wide range of relevant open source datasets.
arXiv Detail & Related papers (2024-11-01T20:44:59Z) - Attribute Controlled Fine-tuning for Large Language Models: A Case Study on Detoxification [76.14641982122696]
We propose a constraint learning schema for fine-tuning Large Language Models (LLMs) with attribute control.
We show that our approach leads to an LLM that produces fewer inappropriate responses while achieving competitive performance on benchmarks and a toxicity detection task.
arXiv Detail & Related papers (2024-10-07T23:38:58Z) - zsLLMCode: An Effective Approach for Functional Code Embedding via LLM with Zero-Shot Learning [6.976968804436321]
Large language models (LLMs) have the capability of zero-shot learning, which does not require training or fine-tuning.
We propose zsLLMCode, a novel approach that generates functional code embeddings using LLMs.
arXiv Detail & Related papers (2024-09-23T01:03:15Z) - R-SFLLM: Jamming Resilient Framework for Split Federated Learning with Large Language Models [83.77114091471822]
Split federated learning (SFL) is a compute-efficient paradigm in distributed machine learning (ML)
A challenge in SFL, particularly when deployed over wireless channels, is the susceptibility of transmitted model parameters to adversarial jamming.
This is particularly pronounced for word embedding parameters in large language models (LLMs), which are crucial for language understanding.
A physical layer framework is developed for resilient SFL with LLMs (R-SFLLM) over wireless networks.
arXiv Detail & Related papers (2024-07-16T12:21:29Z) - Through the Thicket: A Study of Number-Oriented LLMs derived from Random Forest Models [0.0]
Large Language Models (LLMs) have shown exceptional performance in text processing.
This paper proposes a novel approach to training LLMs using knowledge transfer from a random forest (RF) ensemble.
We generate outputs for fine-tuning, enhancing the model's ability to classify and explain its decisions.
arXiv Detail & Related papers (2024-06-07T13:31:51Z) - UniBias: Unveiling and Mitigating LLM Bias through Internal Attention and FFN Manipulation [12.04811490937078]
We investigate how feedforward neural networks (FFNs) and attention heads result in the bias of large language models (LLMs)
To mitigate these biases, we introduce UniBias, an inference-only method that effectively identifies and eliminates biased FFN vectors and attention heads.
arXiv Detail & Related papers (2024-05-31T03:59:15Z) - CausalBench: A Comprehensive Benchmark for Causal Learning Capability of LLMs [27.362012903540492]
The ability to understand causality significantly impacts the competence of large language models (LLMs) in output explanation and counterfactual reasoning.
The ability to understand causality significantly impacts the competence of large language models (LLMs) in output explanation and counterfactual reasoning.
arXiv Detail & Related papers (2024-04-09T14:40:08Z) - Steering LLMs Towards Unbiased Responses: A Causality-Guided Debiasing
Framework [20.753141804841]
Large language models (LLMs) can easily generate biased and discriminative responses.
This paper focuses on social bias, tackling the association between demographic information and LLM outputs.
arXiv Detail & Related papers (2024-03-13T17:46:28Z) - Debiasing Multimodal Large Language Models [61.6896704217147]
Large Vision-Language Models (LVLMs) have become indispensable tools in computer vision and natural language processing.
Our investigation reveals a noteworthy bias in the generated content, where the output is primarily influenced by the underlying Large Language Models (LLMs) prior to the input image.
To rectify these biases and redirect the model's focus toward vision information, we introduce two simple, training-free strategies.
arXiv Detail & Related papers (2024-03-08T12:35:07Z) - The Unlocking Spell on Base LLMs: Rethinking Alignment via In-Context
Learning [61.68787689234622]
A recent study, LIMA, shows that using merely 1K examples for alignment tuning can achieve significant alignment performance as well.
This raises questions about how exactly the alignment tuning transforms a base LLM.
We show that the gap between tuning-free and tuning-based alignment methods can be significantly reduced through strategic prompting.
arXiv Detail & Related papers (2023-12-04T00:46:11Z) - Guiding Large Language Models via Directional Stimulus Prompting [114.84930073977672]
We introduce Directional Stimulus Prompting, a novel framework for guiding black-box large language models (LLMs) toward specific desired outputs.
Instead of directly adjusting LLMs, our method employs a small tunable policy model to generate an auxiliary directional stimulus prompt for each input instance.
arXiv Detail & Related papers (2023-02-22T17:44:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.