Through the Thicket: A Study of Number-Oriented LLMs derived from Random Forest Models
- URL: http://arxiv.org/abs/2406.04926v1
- Date: Fri, 7 Jun 2024 13:31:51 GMT
- Title: Through the Thicket: A Study of Number-Oriented LLMs derived from Random Forest Models
- Authors: Michał Romaszewski, Przemysław Sekuła, Przemysław Głomb, Michał Cholewa, Katarzyna Kołodziej,
- Abstract summary: Large Language Models (LLMs) have shown exceptional performance in text processing.
This paper proposes a novel approach to training LLMs using knowledge transfer from a random forest (RF) ensemble.
We generate outputs for fine-tuning, enhancing the model's ability to classify and explain its decisions.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large Language Models (LLMs) have shown exceptional performance in text processing. Notably, LLMs can synthesize information from large datasets and explain their decisions similarly to human reasoning through a chain of thought (CoT). An emerging application of LLMs is the handling and interpreting of numerical data, where fine-tuning enhances their performance over basic inference methods. This paper proposes a novel approach to training LLMs using knowledge transfer from a random forest (RF) ensemble, leveraging its efficiency and accuracy. By converting RF decision paths into natural language statements, we generate outputs for LLM fine-tuning, enhancing the model's ability to classify and explain its decisions. Our method includes verifying these rules through established classification metrics, ensuring their correctness. We also examine the impact of preprocessing techniques on the representation of numerical data and their influence on classification accuracy and rule correctness
Related papers
- Provenance: A Light-weight Fact-checker for Retrieval Augmented LLM Generation Output [49.893971654861424]
We present a light-weight approach for detecting nonfactual outputs from retrieval-augmented generation (RAG)
We compute a factuality score that can be thresholded to yield a binary decision.
Our experiments show high area under the ROC curve (AUC) across a wide range of relevant open source datasets.
arXiv Detail & Related papers (2024-11-01T20:44:59Z) - One Token Can Help! Learning Scalable and Pluggable Virtual Tokens for Retrieval-Augmented Large Language Models [67.49462724595445]
Retrieval-augmented generation (RAG) is a promising way to improve large language models (LLMs)
We propose a novel method that involves learning scalable and pluggable virtual tokens for RAG.
arXiv Detail & Related papers (2024-05-30T03:44:54Z) - CLAIM Your Data: Enhancing Imputation Accuracy with Contextual Large Language Models [0.18416014644193068]
This paper introduces the Contextual Language model for Accurate Imputation Method (CLAIM)
Unlike traditional imputation methods, CLAIM utilizes contextually relevant natural language descriptors to fill missing values.
Our evaluations across diverse datasets and missingness patterns reveal CLAIM's superior performance over existing imputation techniques.
arXiv Detail & Related papers (2024-05-28T00:08:29Z) - Causal Prompting: Debiasing Large Language Model Prompting based on Front-Door Adjustment [32.12998469814097]
A novel causal prompting method based on front-door adjustment is proposed to effectively mitigate Large Language Models (LLMs) biases.
Experimental results show that the proposed causal prompting approach achieves excellent performance across seven natural language processing datasets.
arXiv Detail & Related papers (2024-03-05T07:47:34Z) - Unsupervised Information Refinement Training of Large Language Models for Retrieval-Augmented Generation [128.01050030936028]
We propose an information refinement training method named InFO-RAG.
InFO-RAG is low-cost and general across various tasks.
It improves the performance of LLaMA2 by an average of 9.39% relative points.
arXiv Detail & Related papers (2024-02-28T08:24:38Z) - Characterizing Truthfulness in Large Language Model Generations with
Local Intrinsic Dimension [63.330262740414646]
We study how to characterize and predict the truthfulness of texts generated from large language models (LLMs)
We suggest investigating internal activations and quantifying LLM's truthfulness using the local intrinsic dimension (LID) of model activations.
arXiv Detail & Related papers (2024-02-28T04:56:21Z) - Measuring Distributional Shifts in Text: The Advantage of Language
Model-Based Embeddings [11.393822909537796]
An essential part of monitoring machine learning models in production is measuring input and output data drift.
Recent advancements in large language models (LLMs) indicate their effectiveness in capturing semantic relationships.
We propose a clustering-based algorithm for measuring distributional shifts in text data by exploiting such embeddings.
arXiv Detail & Related papers (2023-12-04T20:46:48Z) - Reflection-Tuning: Data Recycling Improves LLM Instruction-Tuning [79.32236399694077]
Low-quality data in the training set are usually detrimental to instruction tuning.
We propose a novel method, termed "reflection-tuning"
This approach utilizes an oracle LLM to recycle the original training data by introspecting and enhancing the quality of instructions and responses in the data.
arXiv Detail & Related papers (2023-10-18T05:13:47Z) - LLM-augmented Preference Learning from Natural Language [19.700169351688768]
Large Language Models (LLMs) are equipped to deal with larger context lengths.
LLMs can consistently outperform the SotA when the target text is large.
Few-shot learning yields better performance than zero-shot learning.
arXiv Detail & Related papers (2023-10-12T17:17:27Z) - From Quantity to Quality: Boosting LLM Performance with Self-Guided Data Selection for Instruction Tuning [52.257422715393574]
We introduce a self-guided methodology for Large Language Models (LLMs) to autonomously discern and select cherry samples from open-source datasets.
Our key innovation, the Instruction-Following Difficulty (IFD) metric, emerges as a pivotal metric to identify discrepancies between a model's expected responses and its intrinsic generation capability.
arXiv Detail & Related papers (2023-08-23T09:45:29Z) - Response Length Perception and Sequence Scheduling: An LLM-Empowered LLM
Inference Pipeline [22.08897444328099]
Large language models (LLMs) have revolutionized the field of AI, demonstrating unprecedented capacity across various tasks.
In this paper, we propose an efficient LLM inference pipeline that harnesses the power of LLMs.
arXiv Detail & Related papers (2023-05-22T15:36:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.