Fast, Scale-Adaptive, and Uncertainty-Aware Downscaling of Earth System Model Fields with Generative Machine Learning
- URL: http://arxiv.org/abs/2403.02774v3
- Date: Tue, 14 Jan 2025 11:14:57 GMT
- Title: Fast, Scale-Adaptive, and Uncertainty-Aware Downscaling of Earth System Model Fields with Generative Machine Learning
- Authors: Philipp Hess, Michael Aich, Baoxiang Pan, Niklas Boers,
- Abstract summary: High-resolution Earth system model (ESM) simulations are essential to assess the ecological and socio-economic impacts of anthropogenic climate change.
Recent machine learning approaches have shown promising results in downscaling ESM simulations, outperforming state-of-the-art statistical approaches.
We address these shortcomings by learning a consistency model (CM) that efficiently and accurately downscales arbitrary ESM simulations without retraining in a zero-shot manner.
- Score: 0.0
- License:
- Abstract: Accurate and high-resolution Earth system model (ESM) simulations are essential to assess the ecological and socio-economic impacts of anthropogenic climate change, but are computationally too expensive to be run at sufficiently high spatial resolution. Recent machine learning approaches have shown promising results in downscaling ESM simulations, outperforming state-of-the-art statistical approaches. However, existing methods require computationally costly retraining for each ESM and extrapolate poorly to climates unseen during training. We address these shortcomings by learning a consistency model (CM) that efficiently and accurately downscales arbitrary ESM simulations without retraining in a zero-shot manner. Our approach yields probabilistic downscaled fields at a resolution only limited by the observational reference data. We show that the CM outperforms state-of-the-art diffusion models at a fraction of computational cost while maintaining high controllability on the downscaling task. Further, our method generalizes to climate states unseen during training without explicitly formulated physical constraints.
Related papers
- DSMoE: Matrix-Partitioned Experts with Dynamic Routing for Computation-Efficient Dense LLMs [70.91804882618243]
This paper proposes DSMoE, a novel approach that achieves sparsification by partitioning pre-trained FFN layers into computational blocks.
We implement adaptive expert routing using sigmoid activation and straight-through estimators, enabling tokens to flexibly access different aspects of model knowledge.
Experiments on LLaMA models demonstrate that under equivalent computational constraints, DSMoE achieves superior performance compared to existing pruning and MoE approaches.
arXiv Detail & Related papers (2025-02-18T02:37:26Z) - On conditional diffusion models for PDE simulations [53.01911265639582]
We study score-based diffusion models for forecasting and assimilation of sparse observations.
We propose an autoregressive sampling approach that significantly improves performance in forecasting.
We also propose a new training strategy for conditional score-based models that achieves stable performance over a range of history lengths.
arXiv Detail & Related papers (2024-10-21T18:31:04Z) - Dynamical-generative downscaling of climate model ensembles [13.376226374728917]
We propose a novel approach combining dynamical downscaling with generative artificial intelligence to reduce the cost and improve the uncertainty estimates of downscaled climate projections.
In our framework, an RCM dynamically downscales ESM output to an intermediate resolution, followed by a generative diffusion model that further refines the resolution to the target scale.
arXiv Detail & Related papers (2024-10-02T17:31:01Z) - Efficient Localized Adaptation of Neural Weather Forecasting: A Case Study in the MENA Region [62.09891513612252]
We focus on limited-area modeling and train our model specifically for localized region-level downstream tasks.
We consider the MENA region due to its unique climatic challenges, where accurate localized weather forecasting is crucial for managing water resources, agriculture and mitigating the impacts of extreme weather events.
Our study aims to validate the effectiveness of integrating parameter-efficient fine-tuning (PEFT) methodologies, specifically Low-Rank Adaptation (LoRA) and its variants, to enhance forecast accuracy, as well as training speed, computational resource utilization, and memory efficiency in weather and climate modeling for specific regions.
arXiv Detail & Related papers (2024-09-11T19:31:56Z) - Conditional diffusion models for downscaling & bias correction of Earth system model precipitation [1.5193424827619018]
We propose a novel machine learning framework for simultaneous bias correction and downscaling.
Our approach ensures statistical fidelity, preserves large-scale spatial patterns and outperforms existing methods.
arXiv Detail & Related papers (2024-04-05T11:01:50Z) - Towards Causal Representations of Climate Model Data [18.82507552857727]
This work delves into the potential of causal representation learning, specifically the emphCausal Discovery with Single-parent Decoding (CDSD) method.
Our findings shed light on the challenges, limitations, and promise of using CDSD as a stepping stone towards more interpretable and robust climate model emulation.
arXiv Detail & Related papers (2023-12-05T16:13:34Z) - DiffESM: Conditional Emulation of Earth System Models with Diffusion
Models [2.1989764549743476]
A key application of Earth System Models (ESMs) is studying extreme weather events, such as heat waves or dry spells.
We show that diffusion models can effectively emulate the trends of ESMs under previously unseen climate scenarios.
arXiv Detail & Related papers (2023-04-23T17:12:33Z) - Stabilizing Machine Learning Prediction of Dynamics: Noise and
Noise-inspired Regularization [58.720142291102135]
Recent has shown that machine learning (ML) models can be trained to accurately forecast the dynamics of chaotic dynamical systems.
In the absence of mitigating techniques, this technique can result in artificially rapid error growth, leading to inaccurate predictions and/or climate instability.
We introduce Linearized Multi-Noise Training (LMNT), a regularization technique that deterministically approximates the effect of many small, independent noise realizations added to the model input during training.
arXiv Detail & Related papers (2022-11-09T23:40:52Z) - Physically Constrained Generative Adversarial Networks for Improving Precipitation Fields from Earth System Models [0.0]
Existing post-processing methods can improve ESM simulations locally, but cannot correct errors in modelled spatial patterns.
We propose a framework based on physically constrained generative adversarial networks (GANs) to improve local distributions and spatial structure simultaneously.
arXiv Detail & Related papers (2022-08-25T15:19:10Z) - Reinforcement Learning for Adaptive Mesh Refinement [63.7867809197671]
We propose a novel formulation of AMR as a Markov decision process and apply deep reinforcement learning to train refinement policies directly from simulation.
The model sizes of these policy architectures are independent of the mesh size and hence scale to arbitrarily large and complex simulations.
arXiv Detail & Related papers (2021-03-01T22:55:48Z) - No MCMC for me: Amortized sampling for fast and stable training of
energy-based models [62.1234885852552]
Energy-Based Models (EBMs) present a flexible and appealing way to represent uncertainty.
We present a simple method for training EBMs at scale using an entropy-regularized generator to amortize the MCMC sampling.
Next, we apply our estimator to the recently proposed Joint Energy Model (JEM), where we match the original performance with faster and stable training.
arXiv Detail & Related papers (2020-10-08T19:17:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.