Neural Image Compression with Text-guided Encoding for both Pixel-level and Perceptual Fidelity
- URL: http://arxiv.org/abs/2403.02944v2
- Date: Wed, 22 May 2024 03:57:41 GMT
- Title: Neural Image Compression with Text-guided Encoding for both Pixel-level and Perceptual Fidelity
- Authors: Hagyeong Lee, Minkyu Kim, Jun-Hyuk Kim, Seungeon Kim, Dokwan Oh, Jaeho Lee,
- Abstract summary: We develop a new text-guided image compression algorithm that achieves both high perceptual and pixel-wise fidelity.
By doing so, we avoid decoding based on text-guided generative models.
Our method can achieve high pixel-level and perceptual quality, with either human- or machine-generated captions.
- Score: 18.469136842357095
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent advances in text-guided image compression have shown great potential to enhance the perceptual quality of reconstructed images. These methods, however, tend to have significantly degraded pixel-wise fidelity, limiting their practicality. To fill this gap, we develop a new text-guided image compression algorithm that achieves both high perceptual and pixel-wise fidelity. In particular, we propose a compression framework that leverages text information mainly by text-adaptive encoding and training with joint image-text loss. By doing so, we avoid decoding based on text-guided generative models -- known for high generative diversity -- and effectively utilize the semantic information of text at a global level. Experimental results on various datasets show that our method can achieve high pixel-level and perceptual quality, with either human- or machine-generated captions. In particular, our method outperforms all baselines in terms of LPIPS, with some room for even more improvements when we use more carefully generated captions.
Related papers
- Decoder Pre-Training with only Text for Scene Text Recognition [54.93037783663204]
Scene text recognition (STR) pre-training methods have achieved remarkable progress, primarily relying on synthetic datasets.
We introduce a novel method named Decoder Pre-training with only text for STR (DPTR)
DPTR treats text embeddings produced by the CLIP text encoder as pseudo visual embeddings and uses them to pre-train the decoder.
arXiv Detail & Related papers (2024-08-11T06:36:42Z) - Learned Image Compression with Text Quality Enhancement [14.105456271662328]
We propose to minimize a novel text logit loss designed to quantify the disparity in text between the original and reconstructed images.
Our findings reveal significant enhancements in the quality of reconstructed text upon integration of the proposed loss function with appropriate weighting.
arXiv Detail & Related papers (2024-02-13T18:20:04Z) - ENTED: Enhanced Neural Texture Extraction and Distribution for
Reference-based Blind Face Restoration [51.205673783866146]
We present ENTED, a new framework for blind face restoration that aims to restore high-quality and realistic portrait images.
We utilize a texture extraction and distribution framework to transfer high-quality texture features between the degraded input and reference image.
The StyleGAN-like architecture in our framework requires high-quality latent codes to generate realistic images.
arXiv Detail & Related papers (2024-01-13T04:54:59Z) - Perceptual Image Compression with Cooperative Cross-Modal Side
Information [53.356714177243745]
We propose a novel deep image compression method with text-guided side information to achieve a better rate-perception-distortion tradeoff.
Specifically, we employ the CLIP text encoder and an effective Semantic-Spatial Aware block to fuse the text and image features.
arXiv Detail & Related papers (2023-11-23T08:31:11Z) - Multi-Modality Deep Network for Extreme Learned Image Compression [31.532613540054697]
We propose a multimodal machine learning method for text-guided image compression, in which semantic information of text is used as prior information to guide image compression performance.
In addition, we adopt the image-text attention module and image-request complement module to better fuse image and text features, and propose an improved multimodal semantic-consistent loss to produce semantically complete reconstructions.
arXiv Detail & Related papers (2023-04-26T14:22:59Z) - Extreme Generative Image Compression by Learning Text Embedding from
Diffusion Models [13.894251782142584]
We propose a generative image compression method that demonstrates the potential of saving an image as a short text embedding.
Our method outperforms other state-of-the-art deep learning methods in terms of both perceptual quality and diversity.
arXiv Detail & Related papers (2022-11-14T22:54:19Z) - Make-A-Scene: Scene-Based Text-to-Image Generation with Human Priors [58.71128866226768]
Recent text-to-image generation methods have incrementally improved the generated image fidelity and text relevancy.
We propose a novel text-to-image method that addresses these gaps by (i) enabling a simple control mechanism complementary to text in the form of a scene.
Our model achieves state-of-the-art FID and human evaluation results, unlocking the ability to generate high fidelity images in a resolution of 512x512 pixels.
arXiv Detail & Related papers (2022-03-24T15:44:50Z) - CRIS: CLIP-Driven Referring Image Segmentation [71.56466057776086]
We propose an end-to-end CLIP-Driven Referring Image framework (CRIS)
CRIS resorts to vision-language decoding and contrastive learning for achieving the text-to-pixel alignment.
Our proposed framework significantly outperforms the state-of-the-art performance without any post-processing.
arXiv Detail & Related papers (2021-11-30T07:29:08Z) - Text Compression-aided Transformer Encoding [77.16960983003271]
We propose explicit and implicit text compression approaches to enhance the Transformer encoding.
backbone information, meaning the gist of the input text, is not specifically focused on.
Our evaluation on benchmark datasets shows that the proposed explicit and implicit text compression approaches improve results in comparison to strong baselines.
arXiv Detail & Related papers (2021-02-11T11:28:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.