On a Neural Implementation of Brenier's Polar Factorization
- URL: http://arxiv.org/abs/2403.03071v2
- Date: Thu, 13 Jun 2024 11:06:45 GMT
- Title: On a Neural Implementation of Brenier's Polar Factorization
- Authors: Nina Vesseron, Marco Cuturi,
- Abstract summary: In 1991, Brenier proved a theorem that generalizes the polar decomposition for square matrices factored as PSD $times$ unitary -- to any vector field $F:mathbbRdright mathbbRdarrow.
We propose a practical implementation of the polar factorization theorem, and explore possible uses within machine learning.
- Score: 24.48716080522871
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In 1991, Brenier proved a theorem that generalizes the polar decomposition for square matrices -- factored as PSD $\times$ unitary -- to any vector field $F:\mathbb{R}^d\rightarrow \mathbb{R}^d$. The theorem, known as the polar factorization theorem, states that any field $F$ can be recovered as the composition of the gradient of a convex function $u$ with a measure-preserving map $M$, namely $F=\nabla u \circ M$. We propose a practical implementation of this far-reaching theoretical result, and explore possible uses within machine learning. The theorem is closely related to optimal transport (OT) theory, and we borrow from recent advances in the field of neural optimal transport to parameterize the potential $u$ as an input convex neural network. The map $M$ can be either evaluated pointwise using $u^*$, the convex conjugate of $u$, through the identity $M=\nabla u^* \circ F$, or learned as an auxiliary network. Because $M$ is, in general, not injective, we consider the additional task of estimating the ill-posed inverse map that can approximate the pre-image measure $M^{-1}$ using a stochastic generator. We illustrate possible applications of Brenier's polar factorization to non-convex optimization problems, as well as sampling of densities that are not log-concave.
Related papers
- Tensor network approximation of Koopman operators [0.0]
We propose a framework for approximating the evolution of observables of measure-preserving ergodic systems.
Our approach is based on a spectrally-convergent approximation of the skew-adjoint Koopman generator.
A key feature of this quantum-inspired approximation is that it captures information from a tensor product space of dimension $(2d+1)n$.
arXiv Detail & Related papers (2024-07-09T21:40:14Z) - Transfer Operators from Batches of Unpaired Points via Entropic
Transport Kernels [3.099885205621181]
We derive a maximum-likelihood inference functional, propose a computationally tractable approximation and analyze their properties.
We prove a $Gamma$-convergence result showing that we can recover the true density from empirical approximations as the number $N$ of blocks goes to infinity.
arXiv Detail & Related papers (2024-02-13T12:52:41Z) - A Unified Framework for Uniform Signal Recovery in Nonlinear Generative
Compressed Sensing [68.80803866919123]
Under nonlinear measurements, most prior results are non-uniform, i.e., they hold with high probability for a fixed $mathbfx*$ rather than for all $mathbfx*$ simultaneously.
Our framework accommodates GCS with 1-bit/uniformly quantized observations and single index models as canonical examples.
We also develop a concentration inequality that produces tighter bounds for product processes whose index sets have low metric entropy.
arXiv Detail & Related papers (2023-09-25T17:54:19Z) - Effective Minkowski Dimension of Deep Nonparametric Regression: Function
Approximation and Statistical Theories [70.90012822736988]
Existing theories on deep nonparametric regression have shown that when the input data lie on a low-dimensional manifold, deep neural networks can adapt to intrinsic data structures.
This paper introduces a relaxed assumption that input data are concentrated around a subset of $mathbbRd$ denoted by $mathcalS$, and the intrinsic dimension $mathcalS$ can be characterized by a new complexity notation -- effective Minkowski dimension.
arXiv Detail & Related papers (2023-06-26T17:13:31Z) - Near-optimal fitting of ellipsoids to random points [68.12685213894112]
A basic problem of fitting an ellipsoid to random points has connections to low-rank matrix decompositions, independent component analysis, and principal component analysis.
We resolve this conjecture up to logarithmic factors by constructing a fitting ellipsoid for some $n = Omega(, d2/mathrmpolylog(d),)$.
Our proof demonstrates feasibility of the least squares construction of Saunderson et al. using a convenient decomposition of a certain non-standard random matrix.
arXiv Detail & Related papers (2022-08-19T18:00:34Z) - Learning a Single Neuron with Adversarial Label Noise via Gradient
Descent [50.659479930171585]
We study a function of the form $mathbfxmapstosigma(mathbfwcdotmathbfx)$ for monotone activations.
The goal of the learner is to output a hypothesis vector $mathbfw$ that $F(mathbbw)=C, epsilon$ with high probability.
arXiv Detail & Related papers (2022-06-17T17:55:43Z) - A Law of Robustness beyond Isoperimetry [84.33752026418045]
We prove a Lipschitzness lower bound $Omega(sqrtn/p)$ of robustness of interpolating neural network parameters on arbitrary distributions.
We then show the potential benefit of overparametrization for smooth data when $n=mathrmpoly(d)$.
We disprove the potential existence of an $O(1)$-Lipschitz robust interpolating function when $n=exp(omega(d))$.
arXiv Detail & Related papers (2022-02-23T16:10:23Z) - Fast Convergence of Langevin Dynamics on Manifold: Geodesics meet
Log-Sobolev [31.57723436316983]
One approach to sample from a high dimensional distribution matrix for some function is the Langevin Algorithm.
Our work generalizes the results of [53] where $mathRn$ is defined on af$ rather than $bbRn$.
arXiv Detail & Related papers (2020-10-11T15:02:12Z) - Linear Time Sinkhorn Divergences using Positive Features [51.50788603386766]
Solving optimal transport with an entropic regularization requires computing a $ntimes n$ kernel matrix that is repeatedly applied to a vector.
We propose to use instead ground costs of the form $c(x,y)=-logdotpvarphi(x)varphi(y)$ where $varphi$ is a map from the ground space onto the positive orthant $RRr_+$, with $rll n$.
arXiv Detail & Related papers (2020-06-12T10:21:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.