Resolving chiral transitions in Rydberg arrays with quantum Kibble-Zurek
mechanism and finite-time scaling
- URL: http://arxiv.org/abs/2403.03081v1
- Date: Tue, 5 Mar 2024 16:06:00 GMT
- Title: Resolving chiral transitions in Rydberg arrays with quantum Kibble-Zurek
mechanism and finite-time scaling
- Authors: Jose Soto Garcia and Natalia Chepiga
- Abstract summary: We study how these chiral transitions can be diagnosed experimentally with critical dynamics.
We demonstrate that chiral transitions can be distinguished from the floating phases by comparing Kibble-Zurek dynamics on arrays with different numbers of atoms.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The experimental realization of the quantum Kibble-Zurek mechanism in arrays
of trapped Rydberg atoms has brought the problem of commensurate-incommensurate
transition back into the focus of active research. Relying on equilibrium
simulations of finite intervals, direct chiral transitions at the boundary of
the period-3 and period-4 phases have been predicted. Here, we study how these
chiral transitions can be diagnosed experimentally with critical dynamics. We
demonstrate that chiral transitions can be distinguished from the floating
phases by comparing Kibble-Zurek dynamics on arrays with different numbers of
atoms. Furthermore, by sweeping in the opposite direction and keeping track of
the order parameter, we identify the location of conformal points. Finally,
combining forward and backward sweeps, we extract all critical exponents
characterizing the transition.
Related papers
- Probing quantum floating phases in Rydberg atom arrays [61.242961328078245]
We experimentally observe the emergence of the quantum floating phase in 92 neutral-atom qubits.
The site-resolved measurement reveals the formation of domain walls within the commensurate ordered phase.
As the experimental system sizes increase, we show that the wave vectors approach a continuum of values incommensurate with the lattice.
arXiv Detail & Related papers (2024-01-16T03:26:36Z) - The Sub-Exponential Critical Slowing Down at Floquet Time Crystal Phase
Transition [4.353446104859767]
We study critical dynamics near the Floquet time crystal phase transition.
Its critical behavior is described by introducing a space-time coarse grained correlation function.
We show the relaxation time has a universal sub-exponential scaling near the critical point.
arXiv Detail & Related papers (2023-01-17T13:28:32Z) - Fully packed quantum loop model on the square lattice: phase diagram and
application for Rydberg atoms [4.860868900388247]
We show the complete ground state phase diagram of the fully packed quantum loop model on the square lattice.
We find between the lattice nematic (LN) phase with strong dimer attraction and the staggered phase (SP) with strong dimer repulsion, there emerges a resonating plaquette (RP) phase.
Our renormalization group analysis reveals the different flow directions, fully consistent with the order parameter histogram in Monte Carlo simulations.
arXiv Detail & Related papers (2022-09-22T01:49:51Z) - Phase diagram of Rydberg-dressed atoms on two-leg triangular ladders [50.591267188664666]
We investigate the phase diagram of hard-core bosons in a triangular ladder with next-to-nearest-neighbor interaction along each leg.
For weak interactions, Abelian bosonization predicts a spin density wave and a fully gapless Luttinger liquid phase.
The competition with the zigzag interaction generates a charge density wave, a 'polarized holonic' phase, and a crystalline phase at the filling 2/5.
arXiv Detail & Related papers (2022-07-01T12:49:04Z) - Accessing the topological Mott insulator in cold atom quantum simulators
with realistic Rydberg dressing [58.720142291102135]
We investigate a realistic scenario for the quantum simulation of such systems using cold Rydberg-dressed atoms in optical lattices.
We perform a detailed analysis of the phase diagram at half- and incommensurate fillings, in the mean-field approximation.
We furthermore study the stability of the phases with respect to temperature within the mean-field approximation.
arXiv Detail & Related papers (2022-03-28T14:55:28Z) - Phase diagram of Rydberg-dressed atoms on two-leg square ladders:
Coupling supersymmetric conformal field theories on the lattice [52.77024349608834]
We investigate the phase diagram of hard-core bosons in two-leg ladders in the presence of soft-shoulder potentials.
We show how the competition between local and non-local terms gives rise to a phase diagram with liquid phases with dominant cluster, spin, and density-wave quasi-long-range ordering.
arXiv Detail & Related papers (2021-12-20T09:46:08Z) - Entanglement Transitions from Stochastic Resetting of Non-Hermitian
Quasiparticles [0.0]
We write down a renewal equation for the statistics of the entanglement entropy and show that depending on the spectrum of quasiparticle decay rates different entanglement scaling can arise and even sharp entanglement phase transitions.
When applied to a Quantum Ising chain where the transverse magnetization is measured by quantum jumps, our theory predicts a critical phase with logarithmic scaling of the entanglement, an area law phase and a continuous phase transition between them, with an effective central charge vanishing as a square root at the transition point.
arXiv Detail & Related papers (2021-11-05T13:38:04Z) - Observation of Time-Crystalline Eigenstate Order on a Quantum Processor [80.17270167652622]
Quantum-body systems display rich phase structure in their low-temperature equilibrium states.
We experimentally observe an eigenstate-ordered DTC on superconducting qubits.
Results establish a scalable approach to study non-equilibrium phases of matter on current quantum processors.
arXiv Detail & Related papers (2021-07-28T18:00:03Z) - Quantum phases of Rydberg atoms on a kagome lattice [0.0]
We analyze the zero-temperature phases of an array of neutral atoms on the kagome lattice, interacting via laser excitation to atomic Rydberg states.
Density-matrix renormalization group calculations reveal the presence of a wide variety of complex solid phases with broken lattice symmetries.
We identify a novel regime with dense Rydberg excitations that has a large entanglement entropy and no local order parameter associated with lattice symmetries.
arXiv Detail & Related papers (2020-11-24T19:00:00Z) - Bulk detection of time-dependent topological transitions in quenched
chiral models [48.7576911714538]
We show that the winding number of the Hamiltonian eigenstates can be read-out by measuring the mean chiral displacement of a single-particle wavefunction.
This implies that the mean chiral displacement can detect the winding number even when the underlying Hamiltonian is quenched between different topological phases.
arXiv Detail & Related papers (2020-01-16T17:44:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.