Quantum phases of Rydberg atoms on a kagome lattice
- URL: http://arxiv.org/abs/2011.12295v1
- Date: Tue, 24 Nov 2020 19:00:00 GMT
- Title: Quantum phases of Rydberg atoms on a kagome lattice
- Authors: Rhine Samajdar, Wen Wei Ho, Hannes Pichler, Mikhail D. Lukin, Subir
Sachdev
- Abstract summary: We analyze the zero-temperature phases of an array of neutral atoms on the kagome lattice, interacting via laser excitation to atomic Rydberg states.
Density-matrix renormalization group calculations reveal the presence of a wide variety of complex solid phases with broken lattice symmetries.
We identify a novel regime with dense Rydberg excitations that has a large entanglement entropy and no local order parameter associated with lattice symmetries.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We analyze the zero-temperature phases of an array of neutral atoms on the
kagome lattice, interacting via laser excitation to atomic Rydberg states.
Density-matrix renormalization group calculations reveal the presence of a wide
variety of complex solid phases with broken lattice symmetries. In addition, we
identify a novel regime with dense Rydberg excitations that has a large
entanglement entropy and no local order parameter associated with lattice
symmetries. From a mapping to the triangular lattice quantum dimer model, and
theories of quantum phase transitions out of the proximate solid phases, we
argue that this regime could contain one or more phases with topological order.
Our results provide the foundation for theoretical and experimental
explorations of crystalline and liquid states using programmable quantum
simulators based on Rydberg atom arrays.
Related papers
- Finite-temperature Rydberg arrays: quantum phases and entanglement characterization [0.0]
We develop a network-based numerical toolbox for constructing the quantum many-body states at thermal equilibrium.
We numerically confirm that a conformal scaling law of entanglement extends from the zero-temperature critical points into the low-temperature regime.
arXiv Detail & Related papers (2024-05-28T18:00:03Z) - Probing quantum floating phases in Rydberg atom arrays [61.242961328078245]
We experimentally observe the emergence of the quantum floating phase in 92 neutral-atom qubits.
The site-resolved measurement reveals the formation of domain walls within the commensurate ordered phase.
As the experimental system sizes increase, we show that the wave vectors approach a continuum of values incommensurate with the lattice.
arXiv Detail & Related papers (2024-01-16T03:26:36Z) - Trimer quantum spin liquid in a honeycomb array of Rydberg atoms [0.0]
We show the concrete realization of a fundamentally different class of spin liquids in a honeycomb array of Rydberg atoms.
In the regime where third-nearest-neighbor atoms lie within the Rydberg blockade, we find a novel ground state.
The fidelity of this trimer spin liquid state can be enhanced via dynamical preparation.
arXiv Detail & Related papers (2022-11-01T18:00:00Z) - Fully packed quantum loop model on the square lattice: phase diagram and
application for Rydberg atoms [4.860868900388247]
We show the complete ground state phase diagram of the fully packed quantum loop model on the square lattice.
We find between the lattice nematic (LN) phase with strong dimer attraction and the staggered phase (SP) with strong dimer repulsion, there emerges a resonating plaquette (RP) phase.
Our renormalization group analysis reveals the different flow directions, fully consistent with the order parameter histogram in Monte Carlo simulations.
arXiv Detail & Related papers (2022-09-22T01:49:51Z) - Probing finite-temperature observables in quantum simulators of spin
systems with short-time dynamics [62.997667081978825]
We show how finite-temperature observables can be obtained with an algorithm motivated from the Jarzynski equality.
We show that a finite temperature phase transition in the long-range transverse field Ising model can be characterized in trapped ion quantum simulators.
arXiv Detail & Related papers (2022-06-03T18:00:02Z) - Tuning long-range fermion-mediated interactions in cold-atom quantum
simulators [68.8204255655161]
Engineering long-range interactions in cold-atom quantum simulators can lead to exotic quantum many-body behavior.
Here, we propose several tuning knobs, accessible in current experimental platforms, that allow to further control the range and shape of the mediated interactions.
arXiv Detail & Related papers (2022-03-31T13:32:12Z) - Accessing the topological Mott insulator in cold atom quantum simulators
with realistic Rydberg dressing [58.720142291102135]
We investigate a realistic scenario for the quantum simulation of such systems using cold Rydberg-dressed atoms in optical lattices.
We perform a detailed analysis of the phase diagram at half- and incommensurate fillings, in the mean-field approximation.
We furthermore study the stability of the phases with respect to temperature within the mean-field approximation.
arXiv Detail & Related papers (2022-03-28T14:55:28Z) - Triangular lattice quantum dimer model with variable dimer density [3.749673642775282]
We present large-scale quantum Monte Carlo simulation results on an extension of the triangular lattice quantum dimer model.
We find distinct odd and even $mathbbZ$ spin liquids, along with several phases with no topological order.
arXiv Detail & Related papers (2022-02-22T19:00:00Z) - Bulk and Boundary Quantum Phase Transitions in a Square Rydberg Atom
Array [0.3425341633647624]
We study quantum phase transitions in a Rydberg atom array on a square lattice.
We find that under open boundary conditions, the boundary itself undergoes a second-order quantum phase transition, independent of the bulk.
arXiv Detail & Related papers (2021-12-20T19:00:02Z) - Phase diagram of Rydberg-dressed atoms on two-leg square ladders:
Coupling supersymmetric conformal field theories on the lattice [52.77024349608834]
We investigate the phase diagram of hard-core bosons in two-leg ladders in the presence of soft-shoulder potentials.
We show how the competition between local and non-local terms gives rise to a phase diagram with liquid phases with dominant cluster, spin, and density-wave quasi-long-range ordering.
arXiv Detail & Related papers (2021-12-20T09:46:08Z) - Quantum correlations, entanglement spectrum and coherence of
two-particle reduced density matrix in the Extended Hubbard Model [62.997667081978825]
We study the ground state properties of the one-dimensional extended Hubbard model at half-filling.
In particular, in the superconducting region, we obtain that the entanglement spectrum signals a transition between a dominant singlet (SS) to triplet (TS) pairing ordering in the system.
arXiv Detail & Related papers (2021-10-29T21:02:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.