Design2Code: How Far Are We From Automating Front-End Engineering?
- URL: http://arxiv.org/abs/2403.03163v1
- Date: Tue, 5 Mar 2024 17:56:27 GMT
- Title: Design2Code: How Far Are We From Automating Front-End Engineering?
- Authors: Chenglei Si, Yanzhe Zhang, Zhengyuan Yang, Ruibo Liu, Diyi Yang
- Abstract summary: We formalize this as a Design2Code task and conduct comprehensive benchmarking.
Specifically, we manually curate a benchmark of 484 diverse real-world webpages as test cases.
We develop a suite of multimodal prompting methods and show their effectiveness on GPT-4V and Gemini Pro Vision.
Both human evaluation and automatic metrics show that GPT-4V performs the best on this task compared to other models.
- Score: 83.06100360864502
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Generative AI has made rapid advancements in recent years, achieving
unprecedented capabilities in multimodal understanding and code generation.
This can enable a new paradigm of front-end development, in which multimodal
LLMs might directly convert visual designs into code implementations. In this
work, we formalize this as a Design2Code task and conduct comprehensive
benchmarking. Specifically, we manually curate a benchmark of 484 diverse
real-world webpages as test cases and develop a set of automatic evaluation
metrics to assess how well current multimodal LLMs can generate the code
implementations that directly render into the given reference webpages, given
the screenshots as input. We also complement automatic metrics with
comprehensive human evaluations. We develop a suite of multimodal prompting
methods and show their effectiveness on GPT-4V and Gemini Pro Vision. We
further finetune an open-source Design2Code-18B model that successfully matches
the performance of Gemini Pro Vision. Both human evaluation and automatic
metrics show that GPT-4V performs the best on this task compared to other
models. Moreover, annotators think GPT-4V generated webpages can replace the
original reference webpages in 49% of cases in terms of visual appearance and
content; and perhaps surprisingly, in 64% of cases GPT-4V generated webpages
are considered better than the original reference webpages. Our fine-grained
break-down metrics indicate that open-source models mostly lag in recalling
visual elements from the input webpages and in generating correct layout
designs, while aspects like text content and coloring can be drastically
improved with proper finetuning.
Related papers
- RAMQA: A Unified Framework for Retrieval-Augmented Multi-Modal Question Answering [9.915889321513678]
RAMQA is a unified framework combining learning-to-rank methods with generative permutation-enhanced ranking techniques.
Our generative ranking model generates re-ranked document IDs and specific answers from document candidates in various permutations.
arXiv Detail & Related papers (2025-01-23T00:50:33Z) - Expanding Performance Boundaries of Open-Source Multimodal Models with Model, Data, and Test-Time Scaling [128.24325909395188]
We introduce InternVL 2.5, an advanced multimodal large language model (MLLM) series that builds upon InternVL 2.0.
InternVL 2.5 exhibits competitive performance, rivaling leading commercial models such as GPT-4o and Claude-3.5-Sonnet.
We hope this model contributes to the open-source community by setting new standards for developing and applying multimodal AI systems.
arXiv Detail & Related papers (2024-12-06T18:57:08Z) - D2LLM: Decomposed and Distilled Large Language Models for Semantic Search [18.63768158439252]
We present D2LLMs-Decomposed and Distilled LLMs for semantic search.
We decompose a cross-encoder into an efficient bi-encoder integrated with Pooling by Multihead Attention and an Interaction Emulation Module.
Our experiments show that D2LLM surpasses five leading baselines in terms of all metrics across three tasks.
arXiv Detail & Related papers (2024-06-25T04:03:04Z) - InfiBench: Evaluating the Question-Answering Capabilities of Code Large Language Models [56.723509505549536]
InfiBench is the first large-scale freeform question-answering (QA) benchmark for code to our knowledge.
It comprises 234 carefully selected high-quality Stack Overflow questions that span across 15 programming languages.
We conduct a systematic evaluation for over 100 latest code LLMs on InfiBench, leading to a series of novel and insightful findings.
arXiv Detail & Related papers (2024-03-11T02:06:30Z) - OneLLM: One Framework to Align All Modalities with Language [86.8818857465443]
We present OneLLM, an MLLM that aligns eight modalities to language using a unified framework.
OneLLM is evaluated on 25 diverse benchmarks, encompassing tasks such as multimodal captioning, question answering and reasoning.
arXiv Detail & Related papers (2023-12-06T18:59:19Z) - SEED-Bench-2: Benchmarking Multimodal Large Language Models [67.28089415198338]
Multimodal large language models (MLLMs) have recently demonstrated exceptional capabilities in generating not only texts but also images given interleaved multimodal inputs.
SEED-Bench-2 comprises 24K multiple-choice questions with accurate human annotations, which spans 27 dimensions.
We evaluate the performance of 23 prominent open-source MLLMs and summarize valuable observations.
arXiv Detail & Related papers (2023-11-28T05:53:55Z) - MME: A Comprehensive Evaluation Benchmark for Multimodal Large Language Models [73.86954509967416]
Multimodal Large Language Model (MLLM) relies on the powerful LLM to perform multimodal tasks.
This paper presents the first comprehensive MLLM Evaluation benchmark MME.
It measures both perception and cognition abilities on a total of 14 subtasks.
arXiv Detail & Related papers (2023-06-23T09:22:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.