Multimodal Structured Generation: CVPR's 2nd MMFM Challenge Technical Report
- URL: http://arxiv.org/abs/2406.11403v1
- Date: Mon, 17 Jun 2024 10:45:47 GMT
- Title: Multimodal Structured Generation: CVPR's 2nd MMFM Challenge Technical Report
- Authors: Franz Louis Cesista,
- Abstract summary: Multimodal Foundation Models (MMFMs) have shown remarkable performance on various computer vision and natural language processing tasks.
They require more compute, time, and engineering resources to finetune and deploy compared to traditional, unimodal models.
We present Multimodal Structured Generation, a general framework which constrains the output logits of frozen MMFMs.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Multimodal Foundation Models (MMFMs) have shown remarkable performance on various computer vision and natural language processing tasks. However, their performance on particular tasks such as document understanding is still limited. They also require more compute, time, and engineering resources to finetune and deploy compared to traditional, unimodal models. In this report, we present Multimodal Structured Generation, a general framework which constrains the output logits of frozen MMFMs to force them to reason before responding with structured outputs that downstream APIs can parse and use. We provide a detailed account of our approach, including the technical details, theoretical discussions, and final evaluation results in the 2nd Multimodal Foundation Models Challenge hosted by the Computer Vision and Pattern Recognition (CVPR) conference. Our approach achieved the second highest score in the hidden test set for Phase 2 and third highest overall. This shows the method's ability to generalize to unseen tasks. And that simple engineering can beat expensive & complicated modelling steps as we first discussed in our paper, Retrieval Augmented Structured Generation: Business Document Information Extraction as Tool Use. All of our scripts, deployment steps, and evaluation results can be accessed in https://github.com/leloykun/MMFM-Challenge
Related papers
- Efficient and Effective Weight-Ensembling Mixture of Experts for Multi-Task Model Merging [111.8456671452411]
Multi-task learning (MTL) leverages a shared model to accomplish multiple tasks and facilitate knowledge transfer.
We propose a Weight-Ensembling Mixture of Experts (WEMoE) method for multi-task model merging.
We show that WEMoE and E-WEMoE outperform state-of-the-art (SOTA) model merging methods in terms of MTL performance, generalization, and robustness.
arXiv Detail & Related papers (2024-10-29T07:16:31Z) - EMMA: Efficient Visual Alignment in Multi-Modal LLMs [56.03417732498859]
EMMA is a lightweight cross-modality module designed to efficiently fuse visual and textual encodings.
EMMA boosts performance across multiple tasks by up to 9.3% while significantly improving robustness against hallucinations.
arXiv Detail & Related papers (2024-10-02T23:00:31Z) - MIO: A Foundation Model on Multimodal Tokens [74.85153216521945]
We introduce MIO, a novel foundation model built on multimodal tokens.
MIO is capable of understanding and generating speech, text, images, and videos in an end-to-end, autoregressive manner.
arXiv Detail & Related papers (2024-09-26T09:57:16Z) - MoExtend: Tuning New Experts for Modality and Task Extension [61.29100693866109]
MoExtend is an effective framework designed to streamline the modality adaptation and extension of Mixture-of-Experts (MoE) models.
MoExtend seamlessly integrates new experts into pre-trained MoE models, endowing them with novel knowledge without the need to tune pretrained models.
arXiv Detail & Related papers (2024-08-07T02:28:37Z) - U2++ MoE: Scaling 4.7x parameters with minimal impact on RTF [10.81723269312202]
Mixture-of-Experts (MoE) have been proposed as an energy efficient path to larger and more capable language models.
We benchmark our proposed model on a large scale inner-source dataset (160k hours)
arXiv Detail & Related papers (2024-04-25T08:34:21Z) - Jointly Training Large Autoregressive Multimodal Models [37.32912103934043]
We present the Joint Autoregressive Mixture (JAM) framework, a modular approach that systematically fuses existing text and image generation models.
We also introduce a specialized, data-efficient instruction-tuning strategy, tailored for mixed-modal generation tasks.
Our final instruct-tuned model demonstrates unparalleled performance in generating high-quality multimodal outputs.
arXiv Detail & Related papers (2023-09-27T10:40:23Z) - Variational Information Pursuit with Large Language and Multimodal
Models for Interpretable Predictions [9.07837207208113]
Variational Information Pursuit (V-IP) is a framework for making interpretable predictions by design.
Applying V-IP to any task requires data samples with dense concept-labeling by domain experts.
We extend the V-IP framework with Foundational Models (FMs) to address this limitation.
arXiv Detail & Related papers (2023-08-24T05:04:10Z) - LAMM: Language-Assisted Multi-Modal Instruction-Tuning Dataset,
Framework, and Benchmark [81.42376626294812]
We present Language-Assisted Multi-Modal instruction tuning dataset, framework, and benchmark.
Our aim is to establish LAMM as a growing ecosystem for training and evaluating MLLMs.
We present a comprehensive dataset and benchmark, which cover a wide range of vision tasks for 2D and 3D vision.
arXiv Detail & Related papers (2023-06-11T14:01:17Z) - Diffusion Model is an Effective Planner and Data Synthesizer for
Multi-Task Reinforcement Learning [101.66860222415512]
Multi-Task Diffusion Model (textscMTDiff) is a diffusion-based method that incorporates Transformer backbones and prompt learning for generative planning and data synthesis.
For generative planning, we find textscMTDiff outperforms state-of-the-art algorithms across 50 tasks on Meta-World and 8 maps on Maze2D.
arXiv Detail & Related papers (2023-05-29T05:20:38Z) - Visual Programming for Text-to-Image Generation and Evaluation [73.12069620086311]
We propose two novel interpretable/explainable visual programming frameworks for text-to-image (T2I) generation and evaluation.
First, we introduce VPGen, an interpretable step-by-step T2I generation framework that decomposes T2I generation into three steps: object/count generation, layout generation, and image generation.
Second, we introduce VPEval, an interpretable and explainable evaluation framework for T2I generation based on visual programming.
arXiv Detail & Related papers (2023-05-24T16:42:17Z) - Information Screening whilst Exploiting! Multimodal Relation Extraction
with Feature Denoising and Multimodal Topic Modeling [96.75821232222201]
Existing research on multimodal relation extraction (MRE) faces two co-existing challenges, internal-information over-utilization and external-information under-exploitation.
We propose a novel framework that simultaneously implements the idea of internal-information screening and external-information exploiting.
arXiv Detail & Related papers (2023-05-19T14:56:57Z) - Cheaply Evaluating Inference Efficiency Metrics for Autoregressive
Transformer APIs [66.30706841821123]
Large language models (LLMs) power many state-of-the-art systems in natural language processing.
LLMs are extremely computationally expensive, even at inference time.
We propose a new metric for comparing inference efficiency across models.
arXiv Detail & Related papers (2023-05-03T21:51:42Z) - eP-ALM: Efficient Perceptual Augmentation of Language Models [70.47962271121389]
We propose to direct effort to efficient adaptations of existing models, and propose to augment Language Models with perception.
Existing approaches for adapting pretrained models for vision-language tasks still rely on several key components that hinder their efficiency.
We show that by freezing more than 99% of total parameters, training only one linear projection layer, and prepending only one trainable token, our approach (dubbed eP-ALM) significantly outperforms other baselines on VQA and Captioning.
arXiv Detail & Related papers (2023-03-20T19:20:34Z) - Scaling Vision-Language Models with Sparse Mixture of Experts [128.0882767889029]
We show that mixture-of-experts (MoE) techniques can achieve state-of-the-art performance on a range of benchmarks over dense models of equivalent computational cost.
Our research offers valuable insights into stabilizing the training of MoE models, understanding the impact of MoE on model interpretability, and balancing the trade-offs between compute performance when scaling vision-language models.
arXiv Detail & Related papers (2023-03-13T16:00:31Z) - MulT: An End-to-End Multitask Learning Transformer [66.52419626048115]
We propose an end-to-end Multitask Learning Transformer framework, named MulT, to simultaneously learn multiple high-level vision tasks.
Our framework encodes the input image into a shared representation and makes predictions for each vision task using task-specific transformer-based decoder heads.
arXiv Detail & Related papers (2022-05-17T13:03:18Z) - Long-Span Dependencies in Transformer-based Summarization Systems [38.672160430296536]
Transformer-based models have achieved state-of-the-art results in a wide range of natural language processing (NLP) tasks including document summarization.
One issue with these transformer-based models is that they do not scale well in terms of memory and compute requirements as the input length grows.
In this work, we exploit large pre-trained transformer-based models and address long-span dependencies in abstractive summarization.
arXiv Detail & Related papers (2021-05-08T23:53:03Z) - VAULT: VAriable Unified Long Text Representation for Machine Reading
Comprehension [31.639069657951747]
Existing models on Machine Reading require complex model architecture for modeling long texts with paragraph representation and classification.
We propose VAULT: a light-weight and parallel-efficient paragraph representation for MRC based on contextualized representation from long document input.
arXiv Detail & Related papers (2021-05-07T13:03:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.