論文の概要: PARADISE: Evaluating Implicit Planning Skills of Language Models with Procedural Warnings and Tips Dataset
- arxiv url: http://arxiv.org/abs/2403.03167v3
- Date: Thu, 6 Jun 2024 08:22:16 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-07 20:52:38.485828
- Title: PARADISE: Evaluating Implicit Planning Skills of Language Models with Procedural Warnings and Tips Dataset
- Title(参考訳): PARADISE: 手続き的警告とTipsデータセットによる言語モデルの意図しない計画スキルの評価
- Authors: Arda Uzunoglu, Abdalfatah Rashid Safa, Gözde Gül Şahin,
- Abstract要約: PARADISE は,wikiHow をベースとした実践的な手続きテキスト上で,Q&A 形式を用いた帰納的推論タスクである。
計画の暗黙的な知識を与えられた目標からのみ推論するモデルの能力をテストすることを目的として、中間的なステップを除く、目標に直接関連した警告およびヒント推論タスクを含む。
我々の実験は、微調整言語モデルとゼロショットプロンプトを利用して、ほとんどのシナリオにおいて、大規模言語モデルに対するタスク固有小モデルの有効性を明らかにした。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recently, there has been growing interest within the community regarding whether large language models are capable of planning or executing plans. However, most prior studies use LLMs to generate high-level plans for simplified scenarios lacking linguistic complexity and domain diversity, limiting analysis of their planning abilities. These setups constrain evaluation methods (e.g., predefined action space), architectural choices (e.g., only generative models), and overlook the linguistic nuances essential for realistic analysis. To tackle this, we present PARADISE, an abductive reasoning task using Q\&A format on practical procedural text sourced from wikiHow. It involves warning and tip inference tasks directly associated with goals, excluding intermediary steps, with the aim of testing the ability of the models to infer implicit knowledge of the plan solely from the given goal. Our experiments, utilizing fine-tuned language models and zero-shot prompting, reveal the effectiveness of task-specific small models over large language models in most scenarios. Despite advancements, all models fall short of human performance. Notably, our analysis uncovers intriguing insights, such as variations in model behavior with dropped keywords, struggles of BERT-family and GPT-4 with physical and abstract goals, and the proposed tasks offering valuable prior knowledge for other unseen procedural tasks. The PARADISE dataset and associated resources are publicly available for further research exploration with https://github.com/GGLAB-KU/paradise.
- Abstract(参考訳): 近年,大規模言語モデルが計画立案や実行可能かどうか,コミュニティ内での関心が高まっている。
しかし、多くの先行研究では、言語的な複雑さとドメインの多様性に欠けるシナリオを単純化し、それらの計画能力の分析を制限した高レベルな計画を作成するためにLLMを使用していた。
これらの設定は、制約評価手法(例えば、事前定義された行動空間)、アーキテクチャの選択(例えば、生成モデルのみ)、および現実的な分析に不可欠な言語的ニュアンスを見落としている。
そこで本研究では,wikiHow をベースとした実践的手続きテキスト上で,Q\&A 形式を用いた帰納的推論タスク PARADISE を提案する。
計画の暗黙的な知識を与えられた目標からのみ推論するモデルの能力をテストすることを目的として、中間的なステップを除く、目標に直接関連した警告およびヒント推論タスクを含む。
我々の実験は、微調整言語モデルとゼロショットプロンプトを利用して、ほとんどのシナリオにおいて、大規模言語モデルに対するタスク固有小モデルの有効性を明らかにした。
進歩にもかかわらず、全てのモデルは人間のパフォーマンスに欠ける。
特に本分析では,転落したキーワードによるモデル行動の変動,物理的および抽象的な目標によるBERTファミリーとGPT-4の抗争,その他の未確認な手続き的タスクに対する貴重な事前知識を提供するタスクなど,興味深い知見が得られた。
PARADISEデータセットと関連するリソースはhttps://github.com/GGLAB-KU/paradise.comでさらなる調査のために公開されている。
関連論文リスト
- A Practical Guide to Fine-tuning Language Models with Limited Data [9.413178499853156]
事前訓練されたLarge Language Models (LLM) を採用することは、膨大なデータ要件にもかかわらず、自然言語処理(NLP)における事実上の標準となっている。
限られたデータを用いたLLMの学習に焦点をあてた最近の研究の急増に触発された本研究では、データ不足の下流タスクにおけるモデル性能を最適化するための、近年のトランスファー学習アプローチについて調査する。
論文 参考訳(メタデータ) (2024-11-14T15:55:37Z) - Propose, Assess, Search: Harnessing LLMs for Goal-Oriented Planning in Instructional Videos [48.15438373870542]
VidAssistは、インストラクショナルビデオにおけるゼロ/フェーショット目標指向の計画のために設計された統合フレームワークである。
最適な計画生成のための幅優先探索アルゴリズムを採用している。
実験によると、VidAssistは異なる目標指向の計画設定のための統一されたフレームワークを提供する。
論文 参考訳(メタデータ) (2024-09-30T17:57:28Z) - LangSuitE: Planning, Controlling and Interacting with Large Language Models in Embodied Text Environments [70.91258869156353]
テキストエンボディの世界における6つの代表的具体的タスクを特徴とする多目的・シミュレーション不要なテストベッドであるLangSuitEを紹介する。
以前のLLMベースのテストベッドと比較すると、LangSuitEは複数のシミュレーションエンジンを使わずに、多様な環境への適応性を提供する。
具体化された状態の履歴情報を要約した新しいチェーン・オブ・ソート(CoT)スキーマであるEmMemを考案する。
論文 参考訳(メタデータ) (2024-06-24T03:36:29Z) - Scalable Language Model with Generalized Continual Learning [58.700439919096155]
The Joint Adaptive Re-ization (JARe) is integrated with Dynamic Task-related Knowledge Retrieval (DTKR) to enable adapt adjust of language model based on specific downstream task。
提案手法は,様々なバックボーンやベンチマーク上での最先端性能を実証し,最小限の忘れを伴い,フルセットおよび少数ショットのシナリオにおいて効果的な連続学習を実現する。
論文 参考訳(メタデータ) (2024-04-11T04:22:15Z) - On the Planning, Search, and Memorization Capabilities of Large Language
Models [0.0]
タスク計画における最先端の大規模言語モデル(GPT-4)の可能性について検討する。
大規模言語モデルが計画問題の解決に優れている領域を特定し,適用性を制限する制約を明らかにする。
論文 参考訳(メタデータ) (2023-09-05T00:19:31Z) - Language Model Pre-Training with Sparse Latent Typing [66.75786739499604]
そこで本研究では,多種多様な潜在型を持つ文レベルのキーワードを疎に抽出することのできる,事前学習対象Sparse Latent Typingを提案する。
実験結果から,本モデルは外部知識を使わずに,自己教師型で解釈可能な潜在型カテゴリを学習できることが示唆された。
論文 参考訳(メタデータ) (2022-10-23T00:37:08Z) - Few-shot Subgoal Planning with Language Models [58.11102061150875]
事前訓練された言語モデルにエンコードされた言語は、細粒度のサブゴール列を推測できることを示す。
サブゴナル・インスペクションを強く仮定する最近の手法とは対照的に,我々の実験では,詳細なサブゴラル・シーケンスを微調整せずに推論できる言語モデルが示されている。
論文 参考訳(メタデータ) (2022-05-28T01:03:30Z) - A Generative Language Model for Few-shot Aspect-Based Sentiment Analysis [90.24921443175514]
我々は、アスペクト項、カテゴリを抽出し、対応する極性を予測するアスペクトベースの感情分析に焦点を当てる。
本稿では,一方向の注意を伴う生成言語モデルを用いて,抽出タスクと予測タスクをシーケンス生成タスクに再構成することを提案する。
提案手法は,従来の最先端(BERTをベースとした)の性能を,数ショットとフルショットの設定において,大きなマージンで上回ります。
論文 参考訳(メタデータ) (2022-04-11T18:31:53Z) - Text-Based Action-Model Acquisition for Planning [13.110360825201044]
本稿では,制約満足度と自然言語処理技術を統合することによって,自然言語テキストからアクションモデルを学ぶための新しいアプローチを提案する。
具体的には、まず、テキストからプラントレースを抽出する新しい言語モデルを構築し、それから抽出したプラントレースに基づいてアクションモデルを生成するための制約セットを構築します。
論文 参考訳(メタデータ) (2022-02-15T02:23:31Z) - Analyzing the Limits of Self-Supervision in Handling Bias in Language [52.26068057260399]
我々は、言語モデルが、認識、識別、抽出、言い換えの4つのタスクのセマンティクスをいかにうまく捉えているかを評価する。
分析の結果,言語モデルでは,ジェンダーや政治的アフィリエイトなど,様々なバイアス次元にまたがって,これらのタスクを広範囲にわたって実行することが可能であることが示唆された。
論文 参考訳(メタデータ) (2021-12-16T05:36:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。