Large language models surpass human experts in predicting neuroscience results
- URL: http://arxiv.org/abs/2403.03230v3
- Date: Fri, 21 Jun 2024 17:35:46 GMT
- Title: Large language models surpass human experts in predicting neuroscience results
- Authors: Xiaoliang Luo, Akilles Rechardt, Guangzhi Sun, Kevin K. Nejad, Felipe Yáñez, Bati Yilmaz, Kangjoo Lee, Alexandra O. Cohen, Valentina Borghesani, Anton Pashkov, Daniele Marinazzo, Jonathan Nicholas, Alessandro Salatiello, Ilia Sucholutsky, Pasquale Minervini, Sepehr Razavi, Roberta Rocca, Elkhan Yusifov, Tereza Okalova, Nianlong Gu, Martin Ferianc, Mikail Khona, Kaustubh R. Patil, Pui-Shee Lee, Rui Mata, Nicholas E. Myers, Jennifer K Bizley, Sebastian Musslick, Isil Poyraz Bilgin, Guiomar Niso, Justin M. Ales, Michael Gaebler, N Apurva Ratan Murty, Leyla Loued-Khenissi, Anna Behler, Chloe M. Hall, Jessica Dafflon, Sherry Dongqi Bao, Bradley C. Love,
- Abstract summary: Large language models (LLMs) forecast novel results better than human experts.
BrainBench is a benchmark for predicting neuroscience results.
Our approach is not neuroscience-specific and is transferable to other knowledge-intensive endeavors.
- Score: 60.26891446026707
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Scientific discoveries often hinge on synthesizing decades of research, a task that potentially outstrips human information processing capacities. Large language models (LLMs) offer a solution. LLMs trained on the vast scientific literature could potentially integrate noisy yet interrelated findings to forecast novel results better than human experts. To evaluate this possibility, we created BrainBench, a forward-looking benchmark for predicting neuroscience results. We find that LLMs surpass experts in predicting experimental outcomes. BrainGPT, an LLM we tuned on the neuroscience literature, performed better yet. Like human experts, when LLMs were confident in their predictions, they were more likely to be correct, which presages a future where humans and LLMs team together to make discoveries. Our approach is not neuroscience-specific and is transferable to other knowledge-intensive endeavors.
Related papers
- Large Language Models Think Too Fast To Explore Effectively [0.0]
The extent to which Large Language Models can effectively explore, particularly in open-ended tasks, remains unclear.
This study investigates whether LLMs can surpass humans in exploration during an open-ended task, using Little Alchemy 2 as a paradigm.
arXiv Detail & Related papers (2025-01-29T21:51:17Z) - Improving Scientific Hypothesis Generation with Knowledge Grounded Large Language Models [20.648157071328807]
Large language models (LLMs) can identify novel research directions by analyzing existing knowledge.
LLMs are prone to generating hallucinations'', outputs that are plausible-sounding but factually incorrect.
We propose KG-CoI, a system that enhances LLM hypothesis generation by integrating external, structured knowledge from knowledge graphs.
arXiv Detail & Related papers (2024-11-04T18:50:00Z) - Brain-like Functional Organization within Large Language Models [58.93629121400745]
The human brain has long inspired the pursuit of artificial intelligence (AI)
Recent neuroimaging studies provide compelling evidence of alignment between the computational representation of artificial neural networks (ANNs) and the neural responses of the human brain to stimuli.
In this study, we bridge this gap by directly coupling sub-groups of artificial neurons with functional brain networks (FBNs)
This framework links the AN sub-groups to FBNs, enabling the delineation of brain-like functional organization within large language models (LLMs)
arXiv Detail & Related papers (2024-10-25T13:15:17Z) - Many Heads Are Better Than One: Improved Scientific Idea Generation by A LLM-Based Multi-Agent System [62.832818186789545]
Virtual Scientists (VirSci) is a multi-agent system designed to mimic the teamwork inherent in scientific research.
VirSci organizes a team of agents to collaboratively generate, evaluate, and refine research ideas.
We show that this multi-agent approach outperforms the state-of-the-art method in producing novel scientific ideas.
arXiv Detail & Related papers (2024-10-12T07:16:22Z) - LLM and Simulation as Bilevel Optimizers: A New Paradigm to Advance Physical Scientific Discovery [141.39722070734737]
We propose to enhance the knowledge-driven, abstract reasoning abilities of Large Language Models with the computational strength of simulations.
We introduce Scientific Generative Agent (SGA), a bilevel optimization framework.
We conduct experiments to demonstrate our framework's efficacy in law discovery and molecular design.
arXiv Detail & Related papers (2024-05-16T03:04:10Z) - Matching domain experts by training from scratch on domain knowledge [5.898666039129008]
Recently, large language models (LLMs) have outperformed human experts in predicting the results of neuroscience experiments.
We trained a relatively small 124M- parameter GPT-2 model on 1.3 billion tokens of domain-specific knowledge.
Despite being orders of magnitude smaller than larger LLMs trained on trillions of tokens, small models achieved expert-level performance in predicting neuroscience results.
arXiv Detail & Related papers (2024-05-15T14:50:51Z) - Divergences between Language Models and Human Brains [59.100552839650774]
We systematically explore the divergences between human and machine language processing.
We identify two domains that LMs do not capture well: social/emotional intelligence and physical commonsense.
Our results show that fine-tuning LMs on these domains can improve their alignment with human brain responses.
arXiv Detail & Related papers (2023-11-15T19:02:40Z) - Large Language Models are Zero Shot Hypothesis Proposers [17.612235393984744]
Large Language Models (LLMs) hold a wealth of global and interdisciplinary knowledge that promises to break down information barriers.
We construct a dataset consist of background knowledge and hypothesis pairs from biomedical literature.
We evaluate the hypothesis generation capabilities of various top-tier instructed models in zero-shot, few-shot, and fine-tuning settings.
arXiv Detail & Related papers (2023-11-10T10:03:49Z) - Potential Benefits of Employing Large Language Models in Research in
Moral Education and Development [0.0]
Recently, computer scientists have developed large language models (LLMs) by training prediction models with large-scale language corpora and human reinforcements.
I will examine how LLMs might contribute to moral education and development research.
arXiv Detail & Related papers (2023-06-23T22:39:05Z) - Neural Language Models are not Born Equal to Fit Brain Data, but
Training Helps [75.84770193489639]
We examine the impact of test loss, training corpus and model architecture on the prediction of functional Magnetic Resonance Imaging timecourses of participants listening to an audiobook.
We find that untrained versions of each model already explain significant amount of signal in the brain by capturing similarity in brain responses across identical words.
We suggest good practices for future studies aiming at explaining the human language system using neural language models.
arXiv Detail & Related papers (2022-07-07T15:37:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.