An Online Approach to Solving Public Transit Stationing and Dispatch
Problem
- URL: http://arxiv.org/abs/2403.03339v1
- Date: Tue, 5 Mar 2024 21:48:29 GMT
- Title: An Online Approach to Solving Public Transit Stationing and Dispatch
Problem
- Authors: Jose Paolo Talusan, Chaeeun Han, Ayan Mukhopadhyay, Aron Laszka, Dan
Freudberg, Abhishek Dubey
- Abstract summary: Transit agencies keep a limited number of vehicles in reserve and dispatch them to relieve the affected routes during disruptions.
This paper describes a principled approach using non-myopic sequential decision procedures to solve the problem.
Our experiments show that the proposed framework serves 2% more passengers while reducing deadhead miles by 40%.
- Score: 7.948662269574215
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Public bus transit systems provide critical transportation services for large
sections of modern communities. On-time performance and maintaining the
reliable quality of service is therefore very important. Unfortunately,
disruptions caused by overcrowding, vehicular failures, and road accidents
often lead to service performance degradation. Though transit agencies keep a
limited number of vehicles in reserve and dispatch them to relieve the affected
routes during disruptions, the procedure is often ad-hoc and has to rely on
human experience and intuition to allocate resources (vehicles) to affected
trips under uncertainty. In this paper, we describe a principled approach using
non-myopic sequential decision procedures to solve the problem and decide (a)
if it is advantageous to anticipate problems and proactively station transit
buses near areas with high-likelihood of disruptions and (b) decide if and
which vehicle to dispatch to a particular problem. Our approach was developed
in partnership with the Metropolitan Transportation Authority for a mid-sized
city in the USA and models the system as a semi-Markov decision problem (solved
as a Monte-Carlo tree search procedure) and shows that it is possible to obtain
an answer to these two coupled decision problems in a way that maximizes the
overall reward (number of people served). We sample many possible futures from
generative models, each is assigned to a tree and processed using root
parallelization. We validate our approach using 3 years of data from our
partner agency. Our experiments show that the proposed framework serves 2% more
passengers while reducing deadhead miles by 40%.
Related papers
- GPT-Augmented Reinforcement Learning with Intelligent Control for Vehicle Dispatching [82.19172267487998]
GARLIC: a framework of GPT-Augmented Reinforcement Learning with Intelligent Control for vehicle dispatching.
This paper introduces GARLIC: a framework of GPT-Augmented Reinforcement Learning with Intelligent Control for vehicle dispatching.
arXiv Detail & Related papers (2024-08-19T08:23:38Z) - Forecasting and Mitigating Disruptions in Public Bus Transit Services [7.948662269574215]
Public transportation systems often suffer from unexpected fluctuations in demand and disruptions, such as mechanical failures and medical emergencies.
These fluctuations and disruptions lead to delays and overcrowding, which are detrimental to the passengers' experience and to the overall performance of the transit service.
To proactively mitigate such events, many transit agencies station substitute (reserve) vehicles throughout their service areas, which they can dispatch to augment or replace vehicles on routes that suffer overcrowding or disruption.
However, determining the optimal locations where substitute vehicles should be stationed is a challenging problem due to the randomness of disruptions and due to the nature of selecting locations across a city.
arXiv Detail & Related papers (2024-03-06T22:06:21Z) - Fair collaborative vehicle routing: A deep multi-agent reinforcement
learning approach [49.00137468773683]
Collaborative vehicle routing occurs when carriers collaborate through sharing their transportation requests and performing transportation requests on behalf of each other.
Traditional game theoretic solution concepts are expensive to calculate as the characteristic function scales exponentially with the number of agents.
We propose to model this problem as a coalitional bargaining game solved using deep multi-agent reinforcement learning.
arXiv Detail & Related papers (2023-10-26T15:42:29Z) - Coalitional Bargaining via Reinforcement Learning: An Application to
Collaborative Vehicle Routing [49.00137468773683]
Collaborative Vehicle Routing is where delivery companies cooperate by sharing their delivery information and performing delivery requests on behalf of each other.
This achieves economies of scale and thus reduces cost, greenhouse gas emissions, and road congestion.
But which company should partner with whom, and how much should each company be compensated?
Traditional game theoretic solution concepts, such as the Shapley value or nucleolus, are difficult to calculate for the real-world problem of Collaborative Vehicle Routing.
arXiv Detail & Related papers (2023-10-26T15:04:23Z) - Short Run Transit Route Planning Decision Support System Using a Deep
Learning-Based Weighted Graph [0.0]
We propose a novel deep learning-based methodology for a decision support system that enables public transport planners to identify short-term route improvements rapidly.
By seamlessly adjusting specific sections of routes between two stops during specific times of the day, our method effectively reduces times and enhances PT services.
Using self-supervision, we train a deep learning model for predicting lateness values for road segments. These lateness values are then utilized as edge weights in the transportation graph, enabling efficient path searching.
arXiv Detail & Related papers (2023-08-24T14:37:55Z) - DenseLight: Efficient Control for Large-scale Traffic Signals with Dense
Feedback [109.84667902348498]
Traffic Signal Control (TSC) aims to reduce the average travel time of vehicles in a road network.
Most prior TSC methods leverage deep reinforcement learning to search for a control policy.
We propose DenseLight, a novel RL-based TSC method that employs an unbiased reward function to provide dense feedback on policy effectiveness.
arXiv Detail & Related papers (2023-06-13T05:58:57Z) - iPLAN: Intent-Aware Planning in Heterogeneous Traffic via Distributed
Multi-Agent Reinforcement Learning [57.24340061741223]
We introduce a distributed multi-agent reinforcement learning (MARL) algorithm that can predict trajectories and intents in dense and heterogeneous traffic scenarios.
Our approach for intent-aware planning, iPLAN, allows agents to infer nearby drivers' intents solely from their local observations.
arXiv Detail & Related papers (2023-06-09T20:12:02Z) - Towards Understanding the Benefits and Challenges of Demand Responsive Public Transit- A Case Study in the City of Charlotte, NC [3.678540247562326]
This study investigates the challenges faced by transit-dependent populations in Charlotte, NC.
Our research initially evaluates critical issues such as extended wait times, unreliable schedules, and limited accessibility.
This evaluation included an analysis of the existing Charlotte Area Transit System (CATS) mobile applications and the exploration of user acceptance for a proposed smart, on-demand transit technology.
arXiv Detail & Related papers (2023-04-09T03:10:36Z) - Real-Time Bus Arrival Prediction: A Deep Learning Approach for Enhanced
Urban Mobility [2.1374208474242815]
A prevalent challenge is the mismatch between actual bus arrival times and their scheduled counterparts, leading to disruptions in fixed schedules.
This research introduces an innovative, AI-based, data-driven methodology for predicting bus arrival times at various transit points (stations)
Through the deployment of a fully connected neural network, our method elevates the accuracy and efficiency of public bus transit systems.
arXiv Detail & Related papers (2023-03-27T16:45:22Z) - Reducing Bus Bunching with Asynchronous Multi-Agent Reinforcement
Learning [11.168121941015013]
Bus bunching is a common phenomenon that undermines the reliability and efficiency of bus services.
We formulate route-level bus fleet control as an asynchronous multi-agent reinforcement learning problem.
We extend the classical actor-critic architecture to handle the asynchronous issue.
arXiv Detail & Related papers (2021-05-02T02:08:07Z) - End-to-End Intersection Handling using Multi-Agent Deep Reinforcement
Learning [63.56464608571663]
Navigating through intersections is one of the main challenging tasks for an autonomous vehicle.
In this work, we focus on the implementation of a system able to navigate through intersections where only traffic signs are provided.
We propose a multi-agent system using a continuous, model-free Deep Reinforcement Learning algorithm used to train a neural network for predicting both the acceleration and the steering angle at each time step.
arXiv Detail & Related papers (2021-04-28T07:54:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.