Towards Understanding the Benefits and Challenges of Demand Responsive Public Transit- A Case Study in the City of Charlotte, NC
- URL: http://arxiv.org/abs/2304.06467v2
- Date: Thu, 15 Aug 2024 00:49:38 GMT
- Title: Towards Understanding the Benefits and Challenges of Demand Responsive Public Transit- A Case Study in the City of Charlotte, NC
- Authors: Sanaz Sadat Hosseini, Mona Azarbayjani, Jason Lawrence, Hamed Tabkhi,
- Abstract summary: This study investigates the challenges faced by transit-dependent populations in Charlotte, NC.
Our research initially evaluates critical issues such as extended wait times, unreliable schedules, and limited accessibility.
This evaluation included an analysis of the existing Charlotte Area Transit System (CATS) mobile applications and the exploration of user acceptance for a proposed smart, on-demand transit technology.
- Score: 3.678540247562326
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Access to reliable public transportation is essential for addressing socio-economic disparities, particularly in low-income communities that rely heavily on transit for accessing jobs, healthcare, and essential services. This study investigates the challenges faced by transit-dependent populations in Charlotte, NC, focusing on the spatial and service-related inequities within the current public bus system. Our research initially evaluates critical issues such as extended wait times, unreliable schedules, and limited accessibility, which significantly impact the daily lives of low-income residents. In response to these challenges, we gathered data to assess the potential for a connected, demand-responsive bus system designed to minimize transit gaps and enhance service efficiency in the future. This evaluation included an analysis of the existing Charlotte Area Transit System (CATS) mobile applications and the exploration of user acceptance for a proposed smart, on-demand transit technology. Through surveys conducted across key bus lines-including the Sprinter line and Bus Lines 7, 9, and 97-99-we identified significant shortcomings in the current system. However, our findings also indicate a strong willingness among participants to adopt new transit solutions, provided that they effectively address current issues and alleviate concerns related to smartphone accessibility, privacy, and trust. This research contributes valuable insights into the modernization of public transit systems in Charlotte, highlighting the importance of user-centric approaches in developing innovative, equitable, and efficient transportation solutions.
Related papers
- Public Transport Network Design for Equality of Accessibility via Message Passing Neural Networks and Reinforcement Learning [4.6289929100615]
We focus on Public Transport (PT) accessibility, i.e., the ease of reaching surrounding points of interest via PT.
We combine state-of-the-art Message Passing Neural Networks (MPNN) and Reinforcement Learning.
We show the efficacy of our method against metaheuristics in a use case representing in simplified terms the city of Montreal.
arXiv Detail & Related papers (2024-10-11T14:16:58Z) - GPT-Augmented Reinforcement Learning with Intelligent Control for Vehicle Dispatching [82.19172267487998]
GARLIC: a framework of GPT-Augmented Reinforcement Learning with Intelligent Control for vehicle dispatching.
This paper introduces GARLIC: a framework of GPT-Augmented Reinforcement Learning with Intelligent Control for vehicle dispatching.
arXiv Detail & Related papers (2024-08-19T08:23:38Z) - Forecasting and Mitigating Disruptions in Public Bus Transit Services [7.948662269574215]
Public transportation systems often suffer from unexpected fluctuations in demand and disruptions, such as mechanical failures and medical emergencies.
These fluctuations and disruptions lead to delays and overcrowding, which are detrimental to the passengers' experience and to the overall performance of the transit service.
To proactively mitigate such events, many transit agencies station substitute (reserve) vehicles throughout their service areas, which they can dispatch to augment or replace vehicles on routes that suffer overcrowding or disruption.
However, determining the optimal locations where substitute vehicles should be stationed is a challenging problem due to the randomness of disruptions and due to the nature of selecting locations across a city.
arXiv Detail & Related papers (2024-03-06T22:06:21Z) - An Online Approach to Solving Public Transit Stationing and Dispatch
Problem [7.948662269574215]
Transit agencies keep a limited number of vehicles in reserve and dispatch them to relieve the affected routes during disruptions.
This paper describes a principled approach using non-myopic sequential decision procedures to solve the problem.
Our experiments show that the proposed framework serves 2% more passengers while reducing deadhead miles by 40%.
arXiv Detail & Related papers (2024-03-05T21:48:29Z) - Simulating the Integration of Urban Air Mobility into Existing Transportation Systems: A Survey [37.20137308650717]
Urban air mobility (UAM) has the potential to revolutionize transportation in metropolitan areas.
We conduct a survey to investigate the current state of research on UAM in metropolitan-scale traffic using simulation techniques.
arXiv Detail & Related papers (2023-01-25T16:43:28Z) - A Bibliometric Analysis and Review on Reinforcement Learning for
Transportation Applications [43.356096302298056]
Transportation is the backbone of the economy and urban development.
Reinforcement Learning (RL) that enables autonomous decision-makers to interact with the complex environment.
This paper conducts a bibliometric analysis to identify the development of RL-based methods for transportation applications.
arXiv Detail & Related papers (2022-10-26T07:34:51Z) - Equity Scores for Public Transit Lines from Open-Data and Accessibility
Measures [0.3058685580689604]
Current transit suffers from an evident inequity: the level of service of transit in suburbs is much less satisfying than in city centers.
To achieve sustainability goals and reduce car-dependency, transit should be (re)designed around equity.
arXiv Detail & Related papers (2022-09-30T22:58:11Z) - Unavailable Transit Feed Specification: Making it Available with
Recurrent Neural Networks [8.968417883198374]
In general, the demand for public transport services, with an increasing reluctance to use them, is their quality.
The approach proposed in this paper, using innovative methodologies resorting on data mining and machine learning techniques, aims to make available the unavailable data about public transport.
arXiv Detail & Related papers (2021-02-20T12:17:20Z) - National Access Points for Intelligent Transport Systems Data: From
Conceptualization to Benefits Recognition and Exploitation [55.41644538483948]
The European Union has proposed the development of a National Access Point (NAP) by each individual Member State.
This paper aims to ascertain the role of a NAP within the ITS ecosystem, to investigate methodologies used in designing such platforms, and, through the drafting of an extended use case, showcase a NAP operational process and associate possible benefits with specific steps of it.
arXiv Detail & Related papers (2020-10-14T17:13:00Z) - Urban Sensing based on Mobile Phone Data: Approaches, Applications and
Challenges [67.71975391801257]
Much concern in mobile data analysis is related to human beings and their behaviours.
This work aims to review the methods and techniques that have been implemented to discover knowledge from mobile phone data.
arXiv Detail & Related papers (2020-08-29T15:14:03Z) - Smart Urban Mobility: When Mobility Systems Meet Smart Data [55.456196356335745]
Cities around the world are expanding dramatically, with urban population growth reaching nearly 2.5 billion people in urban areas and road traffic growth exceeding 1.2 billion cars by 2050.
The economic contribution of the transport sector represents 5% of the GDP in Europe and costs an average of US $482.05 billion in the U.S.
arXiv Detail & Related papers (2020-05-09T13:53:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.