Learning to Maximize Mutual Information for Chain-of-Thought Distillation
- URL: http://arxiv.org/abs/2403.03348v3
- Date: Sun, 9 Jun 2024 14:24:54 GMT
- Title: Learning to Maximize Mutual Information for Chain-of-Thought Distillation
- Authors: Xin Chen, Hanxian Huang, Yanjun Gao, Yi Wang, Jishen Zhao, Ke Ding,
- Abstract summary: Distilling Step-by-Step(DSS) has demonstrated promise by imbuing smaller models with the superior reasoning capabilities of their larger counterparts.
However, DSS overlooks the intrinsic relationship between the two training tasks, leading to ineffective integration of CoT knowledge with the task of label prediction.
We propose a variational approach to solve this problem using a learning-based method.
- Score: 13.660167848386806
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Knowledge distillation, the technique of transferring knowledge from large, complex models to smaller ones, marks a pivotal step towards efficient AI deployment. Distilling Step-by-Step~(DSS), a novel method utilizing chain-of-thought~(CoT) distillation, has demonstrated promise by imbuing smaller models with the superior reasoning capabilities of their larger counterparts. In DSS, the distilled model acquires the ability to generate rationales and predict labels concurrently through a multi-task learning framework. However, DSS overlooks the intrinsic relationship between the two training tasks, leading to ineffective integration of CoT knowledge with the task of label prediction. To this end, we investigate the mutual relationship of the two tasks from Information Bottleneck perspective and formulate it as maximizing the mutual information of the representation features of the two tasks. We propose a variational approach to solve this optimization problem using a learning-based method. Our experimental results across four datasets demonstrate that our method outperforms the state-of-the-art DSS. Our findings offer insightful guidance for future research on language model distillation as well as applications involving CoT. Codes are available at \url{https://github.com/xinchen9/cot_distillation_ACL2024}.
Related papers
- Deep Boosting Learning: A Brand-new Cooperative Approach for Image-Text Matching [53.05954114863596]
We propose a brand-new Deep Boosting Learning (DBL) algorithm for image-text matching.
An anchor branch is first trained to provide insights into the data properties.
A target branch is concurrently tasked with more adaptive margin constraints to further enlarge the relative distance between matched and unmatched samples.
arXiv Detail & Related papers (2024-04-28T08:44:28Z) - Robust Training of Federated Models with Extremely Label Deficiency [84.00832527512148]
Federated semi-supervised learning (FSSL) has emerged as a powerful paradigm for collaboratively training machine learning models using distributed data with label deficiency.
We propose a novel twin-model paradigm, called Twin-sight, designed to enhance mutual guidance by providing insights from different perspectives of labeled and unlabeled data.
Our comprehensive experiments on four benchmark datasets provide substantial evidence that Twin-sight can significantly outperform state-of-the-art methods across various experimental settings.
arXiv Detail & Related papers (2024-02-22T10:19:34Z) - EmbedDistill: A Geometric Knowledge Distillation for Information
Retrieval [83.79667141681418]
Large neural models (such as Transformers) achieve state-of-the-art performance for information retrieval (IR)
We propose a novel distillation approach that leverages the relative geometry among queries and documents learned by the large teacher model.
We show that our approach successfully distills from both dual-encoder (DE) and cross-encoder (CE) teacher models to 1/10th size asymmetric students that can retain 95-97% of the teacher performance.
arXiv Detail & Related papers (2023-01-27T22:04:37Z) - CMD: Self-supervised 3D Action Representation Learning with Cross-modal
Mutual Distillation [130.08432609780374]
In 3D action recognition, there exists rich complementary information between skeleton modalities.
We propose a new Cross-modal Mutual Distillation (CMD) framework with the following designs.
Our approach outperforms existing self-supervised methods and sets a series of new records.
arXiv Detail & Related papers (2022-08-26T06:06:09Z) - Variational Distillation for Multi-View Learning [104.17551354374821]
We design several variational information bottlenecks to exploit two key characteristics for multi-view representation learning.
Under rigorously theoretical guarantee, our approach enables IB to grasp the intrinsic correlation between observations and semantic labels.
arXiv Detail & Related papers (2022-06-20T03:09:46Z) - Information Theoretic Representation Distillation [20.802135299032308]
We forge an alternative connection between information theory and knowledge distillation using a recently proposed entropy-like functional.
Our method achieves competitive performance to state-of-the-art on the knowledge distillation and cross-model transfer tasks.
We shed light to a new state-of-the-art for binary quantisation.
arXiv Detail & Related papers (2021-12-01T12:39:50Z) - Improving Question Answering Performance Using Knowledge Distillation
and Active Learning [6.380750645368325]
We propose a novel knowledge distillation (KD) approach to reduce the parameter and model complexity of a pre-trained BERT system.
We demonstrate that our model achieves the performance of a 6-layer TinyBERT and DistilBERT, whilst using only 2% of their total parameters.
arXiv Detail & Related papers (2021-09-26T17:49:54Z) - Exploring Task Difficulty for Few-Shot Relation Extraction [22.585574542329677]
Few-shot relation extraction (FSRE) focuses on recognizing novel relations by learning with merely a handful of annotated instances.
We introduce a novel approach based on contrastive learning that learns better representations by exploiting relation label information.
arXiv Detail & Related papers (2021-09-12T09:40:33Z) - Residual Knowledge Distillation [96.18815134719975]
This work proposes Residual Knowledge Distillation (RKD), which further distills the knowledge by introducing an assistant (A)
In this way, S is trained to mimic the feature maps of T, and A aids this process by learning the residual error between them.
Experiments show that our approach achieves appealing results on popular classification datasets, CIFAR-100 and ImageNet.
arXiv Detail & Related papers (2020-02-21T07:49:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.