On Distilling the Displacement Knowledge for Few-Shot Class-Incremental Learning
- URL: http://arxiv.org/abs/2412.11017v2
- Date: Tue, 17 Dec 2024 16:27:21 GMT
- Title: On Distilling the Displacement Knowledge for Few-Shot Class-Incremental Learning
- Authors: Pengfei Fang, Yongchun Qin, Hui Xue,
- Abstract summary: Few-shot Class-Incremental Learning (FSCIL) addresses the challenges of evolving data distributions and the difficulty of data acquisition in real-world scenarios.
To counteract the catastrophic forgetting typically encountered in FSCIL, knowledge distillation is employed as a way to maintain the knowledge from learned data distribution.
- Score: 17.819582979803286
- License:
- Abstract: Few-shot Class-Incremental Learning (FSCIL) addresses the challenges of evolving data distributions and the difficulty of data acquisition in real-world scenarios. To counteract the catastrophic forgetting typically encountered in FSCIL, knowledge distillation is employed as a way to maintain the knowledge from learned data distribution. Recognizing the limitations of generating discriminative feature representations in a few-shot context, our approach incorporates structural information between samples into knowledge distillation. This structural information serves as a remedy for the low quality of features. Diverging from traditional structured distillation methods that compute sample similarity, we introduce the Displacement Knowledge Distillation (DKD) method. DKD utilizes displacement rather than similarity between samples, incorporating both distance and angular information to significantly enhance the information density retained through knowledge distillation. Observing performance disparities in feature distribution between base and novel classes, we propose the Dual Distillation Network (DDNet). This network applies traditional knowledge distillation to base classes and DKD to novel classes, challenging the conventional integration of novel classes with base classes. Additionally, we implement an instance-aware sample selector during inference to dynamically adjust dual branch weights, thereby leveraging the complementary strengths of each approach. Extensive testing on three benchmarks demonstrates that DDNet achieves state-of-the-art results. Moreover, through rigorous experimentation and comparison, we establish the robustness and general applicability of our proposed DKD method.
Related papers
- Small Scale Data-Free Knowledge Distillation [37.708282211941416]
We propose Small Scale Data-free Knowledge Distillation SSD-KD.
SSD-KD balances synthetic samples and a priority sampling function to select proper samples.
It can perform distillation training conditioned on an extremely small scale of synthetic samples.
arXiv Detail & Related papers (2024-06-12T05:09:41Z) - Learning to Maximize Mutual Information for Chain-of-Thought Distillation [13.660167848386806]
Distilling Step-by-Step(DSS) has demonstrated promise by imbuing smaller models with the superior reasoning capabilities of their larger counterparts.
However, DSS overlooks the intrinsic relationship between the two training tasks, leading to ineffective integration of CoT knowledge with the task of label prediction.
We propose a variational approach to solve this problem using a learning-based method.
arXiv Detail & Related papers (2024-03-05T22:21:45Z) - Distribution Shift Matters for Knowledge Distillation with Webly
Collected Images [91.66661969598755]
We propose a novel method dubbed Knowledge Distillation between Different Distributions" (KD$3$)
We first dynamically select useful training instances from the webly collected data according to the combined predictions of teacher network and student network.
We also build a new contrastive learning block called MixDistribution to generate perturbed data with a new distribution for instance alignment.
arXiv Detail & Related papers (2023-07-21T10:08:58Z) - The Staged Knowledge Distillation in Video Classification: Harmonizing
Student Progress by a Complementary Weakly Supervised Framework [21.494759678807686]
We propose a new weakly supervised learning framework for knowledge distillation in video classification.
Our approach leverages the concept of substage-based learning to distill knowledge based on the combination of student substages and the correlation of corresponding substages.
Our proposed substage-based distillation approach has the potential to inform future research on label-efficient learning for video data.
arXiv Detail & Related papers (2023-07-11T12:10:42Z) - Class-aware Information for Logit-based Knowledge Distillation [16.634819319915923]
We propose a Class-aware Logit Knowledge Distillation (CLKD) method, that extents the logit distillation in both instance-level and class-level.
CLKD enables the student model mimic higher semantic information from the teacher model, hence improving the distillation performance.
arXiv Detail & Related papers (2022-11-27T09:27:50Z) - Exploring Inconsistent Knowledge Distillation for Object Detection with
Data Augmentation [66.25738680429463]
Knowledge Distillation (KD) for object detection aims to train a compact detector by transferring knowledge from a teacher model.
We propose inconsistent knowledge distillation (IKD) which aims to distill knowledge inherent in the teacher model's counter-intuitive perceptions.
Our method outperforms state-of-the-art KD baselines on one-stage, two-stage and anchor-free object detectors.
arXiv Detail & Related papers (2022-09-20T16:36:28Z) - Deep Class Incremental Learning from Decentralized Data [103.2386956343121]
We focus on a new and challenging decentralized machine learning paradigm in which there are continuous inflows of data to be addressed.
We introduce a paradigm to create a basic decentralized counterpart of typical (centralized) class-incremental learning approaches.
We propose a Decentralized Composite knowledge Incremental Distillation framework (DCID) to transfer knowledge from historical models and multiple local sites to the general model continually.
arXiv Detail & Related papers (2022-03-11T15:09:33Z) - Efficient training of lightweight neural networks using Online
Self-Acquired Knowledge Distillation [51.66271681532262]
Online Self-Acquired Knowledge Distillation (OSAKD) is proposed, aiming to improve the performance of any deep neural model in an online manner.
We utilize k-nn non-parametric density estimation technique for estimating the unknown probability distributions of the data samples in the output feature space.
arXiv Detail & Related papers (2021-08-26T14:01:04Z) - Spectrum-Guided Adversarial Disparity Learning [52.293230153385124]
We propose a novel end-to-end knowledge directed adversarial learning framework.
It portrays the class-conditioned intraclass disparity using two competitive encoding distributions and learns the purified latent codes by denoising learned disparity.
The experiments on four HAR benchmark datasets demonstrate the robustness and generalization of our proposed methods over a set of state-of-the-art.
arXiv Detail & Related papers (2020-07-14T05:46:27Z) - Residual Knowledge Distillation [96.18815134719975]
This work proposes Residual Knowledge Distillation (RKD), which further distills the knowledge by introducing an assistant (A)
In this way, S is trained to mimic the feature maps of T, and A aids this process by learning the residual error between them.
Experiments show that our approach achieves appealing results on popular classification datasets, CIFAR-100 and ImageNet.
arXiv Detail & Related papers (2020-02-21T07:49:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.