Global Geolocated Realtime Data of Interfleet Urban Transit Bus Idling
- URL: http://arxiv.org/abs/2403.03489v4
- Date: Sun, 16 Jun 2024 23:42:15 GMT
- Title: Global Geolocated Realtime Data of Interfleet Urban Transit Bus Idling
- Authors: Nicholas Kunz, H. Oliver Gao,
- Abstract summary: GRD-TRT- BUF-4I is a realtime detection system that records the geolocation and idling duration of urban transit bus fleets.
The system detects approximately 200,000 idling events per day from over 50 cities across North America, Europe, Oceania, and Asia.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Urban transit bus idling is a contributor to ecological stress, economic inefficiency, and medically hazardous health outcomes due to emissions. The global accumulation of this frequent pattern of undesirable driving behavior is enormous. In order to measure its scale, we propose GRD-TRT- BUF-4I (Ground Truth Buffer for Idling) an extensible, realtime detection system that records the geolocation and idling duration of urban transit bus fleets internationally. Using live vehicle locations from General Transit Feed Specification (GTFS) Realtime, the system detects approximately 200,000 idling events per day from over 50 cities across North America, Europe, Oceania, and Asia. This realtime data was created to dynamically serve operational decision-making and fleet management to reduce the frequency and duration of idling events as they occur, as well as to capture its accumulative effects. Civil and Transportation Engineers, Urban Planners, Epidemiologists, Policymakers, and other stakeholders might find this useful for emissions modeling, traffic management, route planning, and other urban sustainability efforts at a variety of geographic and temporal scales.
Related papers
- Large-scale Regional Traffic Signal Control Based on Single-Agent Reinforcement Learning [5.1129002613887105]
This paper puts forward a single-agent reinforcement learning (RL)-based regional traffic signal control model.
The model can coordinate traffic signals across a large area with the goals of alleviating regional traffic congestion and minimizing the total travel time.
Experiments are carried out with the SUMO traffic simulation software.
arXiv Detail & Related papers (2025-03-12T10:51:29Z) - Network-Wide Traffic Flow Estimation Across Multiple Cities with Global Open Multi-Source Data: A Large-Scale Case Study in Europe and North America [10.605083464975749]
Network-wide traffic flow, which captures dynamic traffic volume on each link of a general network, is fundamental to smart mobility applications.
Existing research uses various supplementary data sources to compensate for insufficient sensor coverage and estimate the unobserved traffic flow.
We develop an attention-based graph neural network that effectively extracts and synthesizes information from GOMS maps.
arXiv Detail & Related papers (2025-02-06T05:59:18Z) - Improving Traffic Flow Predictions with SGCN-LSTM: A Hybrid Model for Spatial and Temporal Dependencies [55.2480439325792]
This paper introduces the Signal-Enhanced Graph Convolutional Network Long Short Term Memory (SGCN-LSTM) model for predicting traffic speeds across road networks.
Experiments on the PEMS-BAY road network traffic dataset demonstrate the SGCN-LSTM model's effectiveness.
arXiv Detail & Related papers (2024-11-01T00:37:00Z) - GPT-Augmented Reinforcement Learning with Intelligent Control for Vehicle Dispatching [82.19172267487998]
GARLIC: a framework of GPT-Augmented Reinforcement Learning with Intelligent Control for vehicle dispatching.
This paper introduces GARLIC: a framework of GPT-Augmented Reinforcement Learning with Intelligent Control for vehicle dispatching.
arXiv Detail & Related papers (2024-08-19T08:23:38Z) - Deep Reinforcement Learning-based Intelligent Traffic Signal Controls
with Optimized CO2 emissions [6.851243292023835]
Transportation networks face the challenge of sub-optimal control policies that can have adverse effects on human health, the environment, and contribute to traffic congestion.
Despite several adaptive traffic signal controllers in literature, limited research has been conducted on their comparative performance.
We propose EcoLight, a reward shaping scheme for reinforcement learning algorithms that not only reduces CO2 emissions but also achieves competitive results in metrics such as travel time.
arXiv Detail & Related papers (2023-10-19T19:54:47Z) - Prediction of Transportation Index for Urban Patterns in Small and
Medium-sized Indian Cities using Hybrid RidgeGAN Model [0.0]
This research addresses several challenges in predicting the urban transportation index for small and medium-sized Indian cities.
A hybrid framework based on Kernel Ridge Regression (KRR) and CityGAN is introduced to predict transportation index.
The proposed hybrid pipeline, we call it RidgeGAN model, can evaluate the sustainability of urban sprawl.
arXiv Detail & Related papers (2023-06-09T15:05:40Z) - Multi-scale Digital Twin: Developing a fast and physics-informed
surrogate model for groundwater contamination with uncertain climate models [53.44486283038738]
Climate change exacerbates the long-term soil management problem of groundwater contamination.
We develop a physics-informed machine learning surrogate model using U-Net enhanced Fourier Neural Contaminated (PDENO)
In parallel, we develop a convolutional autoencoder combined with climate data to reduce the dimensionality of climatic region similarities across the United States.
arXiv Detail & Related papers (2022-11-20T06:46:35Z) - Predicting the traffic flux in the city of Valencia with Deep Learning [0.0]
We investigate whether a high amount of data on traffic flow throughout a city allows an Artificial Intelligence to predict the traffic flux far enough in advance in order to enable emission reduction measures such as those linked to the Low Emission Zone policies.
To build a predictive model, we use the city of Valencia traffic sensor system, one of the densest in the world, with nearly 3500 sensors distributed throughout the city.
We show that the LSTM is capable of predicting future evolution of the traffic flux in real-time, by extracting patterns out of the measured data.
arXiv Detail & Related papers (2022-10-04T14:19:06Z) - SHIFT: A Synthetic Driving Dataset for Continuous Multi-Task Domain
Adaptation [152.60469768559878]
SHIFT is the largest multi-task synthetic dataset for autonomous driving.
It presents discrete and continuous shifts in cloudiness, rain and fog intensity, time of day, and vehicle and pedestrian density.
Our dataset and benchmark toolkit are publicly available at www.vis.xyz/shift.
arXiv Detail & Related papers (2022-06-16T17:59:52Z) - Traffic4cast at NeurIPS 2021 -- Temporal and Spatial Few-Shot Transfer
Learning in Gridded Geo-Spatial Processes [61.16854022482186]
The IARAI Traffic4cast competitions at NeurIPS 2019 and 2020 showed that neural networks can successfully predict future traffic conditions 1 hour into the future.
U-Nets proved to be the winning architecture, demonstrating an ability to extract relevant features in this complex real-world geo-spatial process.
The competition now covers ten cities over 2 years, providing data compiled from over 1012 GPS probe data.
arXiv Detail & Related papers (2022-03-31T14:40:01Z) - An Experimental Urban Case Study with Various Data Sources and a Model
for Traffic Estimation [65.28133251370055]
We organize an experimental campaign with video measurement in an area within the urban network of Zurich, Switzerland.
We focus on capturing the traffic state in terms of traffic flow and travel times by ensuring measurements from established thermal cameras.
We propose a simple yet efficient Multiple Linear Regression (MLR) model to estimate travel times with fusion of various data sources.
arXiv Detail & Related papers (2021-08-02T08:13:57Z) - Public Transportation Demand Analysis: A Case Study of Metropolitan
Lagos [0.0]
Lagos is experiencing rapid urbanization and currently has a population of just under 15 million.
Long waiting times and uncertain travel times has driven many people to acquire their own vehicle or use alternative modes of transport.
This paper investigates urban travel demand in Lagos and explores passenger dynamics in time and space.
arXiv Detail & Related papers (2021-05-25T10:35:30Z) - Extracting Spatiotemporal Demand for Public Transit from Mobility Data [0.0]
Changing urban demographics pose several challenges to efficient management of transit services.
We propose a method to identify a simple method to estimate demand for public transit in a city.
arXiv Detail & Related papers (2020-06-05T10:21:31Z) - Smart Urban Mobility: When Mobility Systems Meet Smart Data [55.456196356335745]
Cities around the world are expanding dramatically, with urban population growth reaching nearly 2.5 billion people in urban areas and road traffic growth exceeding 1.2 billion cars by 2050.
The economic contribution of the transport sector represents 5% of the GDP in Europe and costs an average of US $482.05 billion in the U.S.
arXiv Detail & Related papers (2020-05-09T13:53:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.