Enhanced Low-Dose CT Image Reconstruction by Domain and Task Shifting Gaussian Denoisers
- URL: http://arxiv.org/abs/2403.03551v3
- Date: Fri, 13 Dec 2024 14:11:35 GMT
- Title: Enhanced Low-Dose CT Image Reconstruction by Domain and Task Shifting Gaussian Denoisers
- Authors: Tim Selig, Thomas März, Martin Storath, Andreas Weinmann,
- Abstract summary: Computed tomography from a low radiation dose (LDCT) is challenging due to high noise in the projection data.
We propose a method combining the simplicity and efficiency of two-stage methods with state-of-the-art reconstruction quality.
- Score: 3.4748713192043876
- License:
- Abstract: Computed tomography from a low radiation dose (LDCT) is challenging due to high noise in the projection data. Popular approaches for LDCT image reconstruction are two-stage methods, typically consisting of the filtered backprojection (FBP) algorithm followed by a neural network for LDCT image enhancement. Two-stage methods are attractive for their simplicity and potential for computational efficiency, typically requiring only a single FBP and a neural network forward pass for inference. However, the best reconstruction quality is currently achieved by unrolled iterative methods (Learned Primal-Dual and ItNet), which are more complex and thus have a higher computational cost for training and inference. We propose a method combining the simplicity and efficiency of two-stage methods with state-of-the-art reconstruction quality. Our strategy utilizes a neural network pretrained for Gaussian noise removal from natural grayscale images, fine-tuned for LDCT image enhancement. We call this method FBP-DTSGD (Domain and Task Shifted Gaussian Denoisers) as the fine-tuning is a task shift from Gaussian denoising to enhancing LDCT images and a domain shift from natural grayscale to LDCT images. An ablation study with three different pretrained Gaussian denoisers indicates that the performance of FBP-DTSGD does not depend on a specific denoising architecture, suggesting future advancements in Gaussian denoising could benefit the method. The study also shows that pretraining on natural images enhances LDCT reconstruction quality, especially with limited training data. Notably, pretraining involves no additional cost, as existing pretrained models are used. The proposed method currently holds the top mean position in the LoDoPaB-CT challenge.
Related papers
- Enhancing Low Dose Computed Tomography Images Using Consistency Training Techniques [7.694256285730863]
In this paper, we introduce the beta noise distribution, which provides flexibility in adjusting noise levels.
High Noise Improved Consistency Training (HN-iCT) is trained in a supervised fashion.
Our results indicate that unconditional image generation using HN-iCT significantly outperforms basic CT and iCT training techniques with NFE=1.
arXiv Detail & Related papers (2024-11-19T02:48:36Z) - Rotational Augmented Noise2Inverse for Low-dose Computed Tomography
Reconstruction [83.73429628413773]
Supervised deep learning methods have shown the ability to remove noise in images but require accurate ground truth.
We propose a novel self-supervised framework for LDCT, in which ground truth is not required for training the convolutional neural network (CNN)
Numerical and experimental results show that the reconstruction accuracy of N2I with sparse views is degrading while the proposed rotational augmented Noise2Inverse (RAN2I) method keeps better image quality over a different range of sampling angles.
arXiv Detail & Related papers (2023-12-19T22:40:51Z) - Diffusion Probabilistic Priors for Zero-Shot Low-Dose CT Image Denoising [10.854795474105366]
Denoising low-dose computed tomography (CT) images is a critical task in medical image computing.
Existing unsupervised deep learning-based methods often require training with a large number of low-dose CT images.
We propose a novel unsupervised method that only utilizes normal-dose CT images during training, enabling zero-shot denoising of low-dose CT images.
arXiv Detail & Related papers (2023-05-25T09:38:52Z) - Zero-shot Blind Image Denoising via Implicit Neural Representations [77.79032012459243]
We propose an alternative denoising strategy that leverages the architectural inductive bias of implicit neural representations (INRs)
We show that our method outperforms existing zero-shot denoising methods under an extensive set of low-noise or real-noise scenarios.
arXiv Detail & Related papers (2022-04-05T12:46:36Z) - Convolutional Neural Network to Restore Low-Dose Digital Breast
Tomosynthesis Projections in a Variance Stabilization Domain [15.149874383250236]
convolution neural network (CNN) proposed to restore low-dose (LD) projections to image quality equivalent to a standard full-dose (FD) acquisition.
Network achieved superior results in terms of the mean squared error (MNSE), normalized training time and noise spatial correlation compared with networks trained with traditional data-driven methods.
arXiv Detail & Related papers (2022-03-22T13:31:47Z) - Image reconstruction algorithms in radio interferometry: from
handcrafted to learned denoisers [7.1439425093981574]
We introduce a new class of iterative image reconstruction algorithms for radio interferometry, inspired by plug-and-play methods.
The approach consists in learning a prior image model by training a deep neural network (DNN) as a denoiser.
We plug the learned denoiser into the forward-backward optimization algorithm, resulting in a simple iterative structure alternating a denoising step with a gradient-descent data-fidelity step.
arXiv Detail & Related papers (2022-02-25T20:26:33Z) - Progressive Training of Multi-level Wavelet Residual Networks for Image
Denoising [80.10533234415237]
This paper presents a multi-level wavelet residual network (MWRN) architecture as well as a progressive training scheme to improve image denoising performance.
Experiments on both synthetic and real-world noisy images show that our PT-MWRN performs favorably against the state-of-the-art denoising methods.
arXiv Detail & Related papers (2020-10-23T14:14:00Z) - Iterative Reconstruction for Low-Dose CT using Deep Gradient Priors of
Generative Model [24.024765099719886]
Iterative reconstruction is one of the most promising ways to compensate for the increased noise due to reduction of photon flux.
In this work we integrate the data-consistency as a conditional term into the iterative generative model for low-dose CT.
The distance between the reconstructed image and the manifold is minimized along with data fidelity during reconstruction.
arXiv Detail & Related papers (2020-09-27T06:36:39Z) - Deep Variational Network Toward Blind Image Restoration [60.45350399661175]
Blind image restoration is a common yet challenging problem in computer vision.
We propose a novel blind image restoration method, aiming to integrate both the advantages of them.
Experiments on two typical blind IR tasks, namely image denoising and super-resolution, demonstrate that the proposed method achieves superior performance over current state-of-the-arts.
arXiv Detail & Related papers (2020-08-25T03:30:53Z) - The Power of Triply Complementary Priors for Image Compressive Sensing [89.14144796591685]
We propose a joint low-rank deep (LRD) image model, which contains a pair of complementaryly trip priors.
We then propose a novel hybrid plug-and-play framework based on the LRD model for image CS.
To make the optimization tractable, a simple yet effective algorithm is proposed to solve the proposed H-based image CS problem.
arXiv Detail & Related papers (2020-05-16T08:17:44Z) - Single-Image HDR Reconstruction by Learning to Reverse the Camera
Pipeline [100.5353614588565]
We propose to incorporate the domain knowledge of the LDR image formation pipeline into our model.
We model the HDRto-LDR image formation pipeline as the (1) dynamic range clipping, (2) non-linear mapping from a camera response function, and (3) quantization.
We demonstrate that the proposed method performs favorably against state-of-the-art single-image HDR reconstruction algorithms.
arXiv Detail & Related papers (2020-04-02T17:59:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.