Image reconstruction algorithms in radio interferometry: from
handcrafted to learned denoisers
- URL: http://arxiv.org/abs/2202.12959v1
- Date: Fri, 25 Feb 2022 20:26:33 GMT
- Title: Image reconstruction algorithms in radio interferometry: from
handcrafted to learned denoisers
- Authors: Matthieu Terris, Arwa Dabbech, Chao Tang, Yves Wiaux
- Abstract summary: We introduce a new class of iterative image reconstruction algorithms for radio interferometry, inspired by plug-and-play methods.
The approach consists in learning a prior image model by training a deep neural network (DNN) as a denoiser.
We plug the learned denoiser into the forward-backward optimization algorithm, resulting in a simple iterative structure alternating a denoising step with a gradient-descent data-fidelity step.
- Score: 7.1439425093981574
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We introduce a new class of iterative image reconstruction algorithms for
radio interferometry, at the interface of convex optimization and deep
learning, inspired by plug-and-play methods. The approach consists in learning
a prior image model by training a deep neural network (DNN) as a denoiser, and
substituting it for the handcrafted proximal regularization operator of an
optimization algorithm. The proposed AIRI ("AI for Regularization in
Radio-Interferometric Imaging") framework, for imaging complex intensity
structure with diffuse and faint emission, inherits the robustness and
interpretability of optimization, and the learning power and speed of networks.
Our approach relies on three steps. Firstly, we design a low dynamic range
database for supervised training from optical intensity images. Secondly, we
train a DNN denoiser with basic architecture ensuring positivity of the output
image, at a noise level inferred from the signal-to-noise ratio of the data. We
use either $\ell_2$ or $\ell_1$ training losses, enhanced with a
nonexpansiveness term ensuring algorithm convergence, and including on-the-fly
database dynamic range enhancement via exponentiation. Thirdly, we plug the
learned denoiser into the forward-backward optimization algorithm, resulting in
a simple iterative structure alternating a denoising step with a
gradient-descent data-fidelity step. The resulting AIRI-$\ell_2$ and
AIRI-$\ell_1$ were validated against CLEAN and optimization algorithms of the
SARA family, propelled by the "average sparsity" proximal regularization
operator. Simulation results show that these first AIRI incarnations are
competitive in imaging quality with SARA and its unconstrained
forward-backward-based version uSARA, while providing significant acceleration.
CLEAN remains faster but offers lower reconstruction quality.
Related papers
- LeRF: Learning Resampling Function for Adaptive and Efficient Image Interpolation [64.34935748707673]
Recent deep neural networks (DNNs) have made impressive progress in performance by introducing learned data priors.
We propose a novel method of Learning Resampling (termed LeRF) which takes advantage of both the structural priors learned by DNNs and the locally continuous assumption.
LeRF assigns spatially varying resampling functions to input image pixels and learns to predict the shapes of these resampling functions with a neural network.
arXiv Detail & Related papers (2024-07-13T16:09:45Z) - Deep Convolutional Neural Networks Meet Variational Shape Compactness Priors for Image Segmentation [7.314877483509877]
Shape compactness is a key geometrical property to describe interesting regions in many image segmentation tasks.
We propose two novel algorithms to solve the introduced image segmentation problem that incorporates a shape-compactness prior.
The proposed algorithms significantly improve IoU by 20% training on a highly noisy image dataset.
arXiv Detail & Related papers (2024-05-23T11:05:35Z) - Unfolded proximal neural networks for robust image Gaussian denoising [7.018591019975253]
We propose a unified framework to build PNNs for the Gaussian denoising task, based on both the dual-FB and the primal-dual Chambolle-Pock algorithms.
We also show that accelerated versions of these algorithms enable skip connections in the associated NN layers.
arXiv Detail & Related papers (2023-08-06T15:32:16Z) - Curvature regularization for Non-line-of-sight Imaging from
Under-sampled Data [5.591221518341613]
Non-line-of-sight (NLOS) imaging aims to reconstruct the three-dimensional hidden scenes from the data measured in the line-of-sight.
We propose novel NLOS reconstruction models based on curvature regularization.
We evaluate the proposed algorithms on both synthetic and real datasets.
arXiv Detail & Related papers (2023-01-01T14:10:43Z) - Loop Unrolled Shallow Equilibrium Regularizer (LUSER) -- A
Memory-Efficient Inverse Problem Solver [26.87738024952936]
In inverse problems we aim to reconstruct some underlying signal of interest from potentially corrupted and often ill-posed measurements.
We propose an LU algorithm with shallow equilibrium regularizers (L)
These implicit models are as expressive as deeper convolutional networks, but far more memory efficient during training.
arXiv Detail & Related papers (2022-10-10T19:50:37Z) - Multi-stage image denoising with the wavelet transform [125.2251438120701]
Deep convolutional neural networks (CNNs) are used for image denoising via automatically mining accurate structure information.
We propose a multi-stage image denoising CNN with the wavelet transform (MWDCNN) via three stages, i.e., a dynamic convolutional block (DCB), two cascaded wavelet transform and enhancement blocks (WEBs) and residual block (RB)
arXiv Detail & Related papers (2022-09-26T03:28:23Z) - Rank-Enhanced Low-Dimensional Convolution Set for Hyperspectral Image
Denoising [50.039949798156826]
This paper tackles the challenging problem of hyperspectral (HS) image denoising.
We propose rank-enhanced low-dimensional convolution set (Re-ConvSet)
We then incorporate Re-ConvSet into the widely-used U-Net architecture to construct an HS image denoising method.
arXiv Detail & Related papers (2022-07-09T13:35:12Z) - An Empirical Analysis of Recurrent Learning Algorithms In Neural Lossy
Image Compression Systems [73.48927855855219]
Recent advances in deep learning have resulted in image compression algorithms that outperform JPEG and JPEG 2000 on the standard Kodak benchmark.
In this paper, we perform the first large-scale comparison of recent state-of-the-art hybrid neural compression algorithms.
arXiv Detail & Related papers (2022-01-27T19:47:51Z) - Deep Learning Adapted Acceleration for Limited-view Photoacoustic
Computed Tomography [1.8830359888767887]
Photoacoustic computed tomography (PACT) uses unfocused large-area light to illuminate the target with ultrasound transducer array for PA signal detection.
Limited-view issue could cause a low-quality image in PACT due to the limitation of geometric condition.
A model-based method that combines the mathematical variational model with deep learning is proposed to speed up and regularize the unrolled procedure of reconstruction.
arXiv Detail & Related papers (2021-11-08T02:05:58Z) - Learning a Model-Driven Variational Network for Deformable Image
Registration [89.9830129923847]
VR-Net is a novel cascaded variational network for unsupervised deformable image registration.
It outperforms state-of-the-art deep learning methods on registration accuracy.
It maintains the fast inference speed of deep learning and the data-efficiency of variational model.
arXiv Detail & Related papers (2021-05-25T21:37:37Z) - Identity Enhanced Residual Image Denoising [61.75610647978973]
We learn a fully-convolutional network model that consists of a Chain of Identity Mapping Modules and residual on the residual architecture for image denoising.
The proposed network produces remarkably higher numerical accuracy and better visual image quality than the classical state-of-the-art and CNN algorithms.
arXiv Detail & Related papers (2020-04-26T04:52:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.