Neural Architecture Search using Particle Swarm and Ant Colony
Optimization
- URL: http://arxiv.org/abs/2403.03781v1
- Date: Wed, 6 Mar 2024 15:23:26 GMT
- Title: Neural Architecture Search using Particle Swarm and Ant Colony
Optimization
- Authors: S\'eamus Lankford and Diarmuid Grimes
- Abstract summary: This paper focuses on training and optimizing CNNs using the Swarm Intelligence (SI) components of OpenNAS.
A system integrating open source tools for Neural Architecture Search (OpenNAS), in the classification of images, has been developed.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Neural network models have a number of hyperparameters that must be chosen
along with their architecture. This can be a heavy burden on a novice user,
choosing which architecture and what values to assign to parameters. In most
cases, default hyperparameters and architectures are used. Significant
improvements to model accuracy can be achieved through the evaluation of
multiple architectures. A process known as Neural Architecture Search (NAS) may
be applied to automatically evaluate a large number of such architectures. A
system integrating open source tools for Neural Architecture Search (OpenNAS),
in the classification of images, has been developed as part of this research.
OpenNAS takes any dataset of grayscale, or RBG images, and generates
Convolutional Neural Network (CNN) architectures based on a range of
metaheuristics using either an AutoKeras, a transfer learning or a Swarm
Intelligence (SI) approach. Particle Swarm Optimization (PSO) and Ant Colony
Optimization (ACO) are used as the SI algorithms. Furthermore, models developed
through such metaheuristics may be combined using stacking ensembles. In the
context of this paper, we focus on training and optimizing CNNs using the Swarm
Intelligence (SI) components of OpenNAS. Two major types of SI algorithms,
namely PSO and ACO, are compared to see which is more effective in generating
higher model accuracies. It is shown, with our experimental design, that the
PSO algorithm performs better than ACO. The performance improvement of PSO is
most notable with a more complex dataset. As a baseline, the performance of
fine-tuned pre-trained models is also evaluated.
Related papers
- DNA Family: Boosting Weight-Sharing NAS with Block-Wise Supervisions [121.05720140641189]
We develop a family of models with the distilling neural architecture (DNA) techniques.
Our proposed DNA models can rate all architecture candidates, as opposed to previous works that can only access a sub- search space using algorithms.
Our models achieve state-of-the-art top-1 accuracy of 78.9% and 83.6% on ImageNet for a mobile convolutional network and a small vision transformer, respectively.
arXiv Detail & Related papers (2024-03-02T22:16:47Z) - DCP-NAS: Discrepant Child-Parent Neural Architecture Search for 1-bit
CNNs [53.82853297675979]
1-bit convolutional neural networks (CNNs) with binary weights and activations show their potential for resource-limited embedded devices.
One natural approach is to use 1-bit CNNs to reduce the computation and memory cost of NAS.
We introduce Discrepant Child-Parent Neural Architecture Search (DCP-NAS) to efficiently search 1-bit CNNs.
arXiv Detail & Related papers (2023-06-27T11:28:29Z) - GeNAS: Neural Architecture Search with Better Generalization [14.92869716323226]
Recent neural architecture search (NAS) approaches rely on validation loss or accuracy to find the superior network for the target data.
In this paper, we investigate a new neural architecture search measure for excavating architectures with better generalization.
arXiv Detail & Related papers (2023-05-15T12:44:54Z) - NAR-Former: Neural Architecture Representation Learning towards Holistic
Attributes Prediction [37.357949900603295]
We propose a neural architecture representation model that can be used to estimate attributes holistically.
Experiment results show that our proposed framework can be used to predict the latency and accuracy attributes of both cell architectures and whole deep neural networks.
arXiv Detail & Related papers (2022-11-15T10:15:21Z) - FlowNAS: Neural Architecture Search for Optical Flow Estimation [65.44079917247369]
We propose a neural architecture search method named FlowNAS to automatically find the better encoder architecture for flow estimation task.
Experimental results show that the discovered architecture with the weights inherited from the super-network achieves 4.67% F1-all error on KITTI.
arXiv Detail & Related papers (2022-07-04T09:05:25Z) - Rethinking Architecture Selection in Differentiable NAS [74.61723678821049]
Differentiable Neural Architecture Search is one of the most popular NAS methods for its search efficiency and simplicity.
We propose an alternative perturbation-based architecture selection that directly measures each operation's influence on the supernet.
We find that several failure modes of DARTS can be greatly alleviated with the proposed selection method.
arXiv Detail & Related papers (2021-08-10T00:53:39Z) - Convolution Neural Network Hyperparameter Optimization Using Simplified
Swarm Optimization [2.322689362836168]
Convolutional Neural Network (CNN) is widely used in computer vision.
It is not easy to find a network architecture with better performance.
arXiv Detail & Related papers (2021-03-06T00:23:27Z) - Differentiable Neural Architecture Learning for Efficient Neural Network
Design [31.23038136038325]
We introduce a novel emph architecture parameterisation based on scaled sigmoid function.
We then propose a general emphiable Neural Architecture Learning (DNAL) method to optimize the neural architecture without the need to evaluate candidate neural networks.
arXiv Detail & Related papers (2021-03-03T02:03:08Z) - DC-NAS: Divide-and-Conquer Neural Architecture Search [108.57785531758076]
We present a divide-and-conquer (DC) approach to effectively and efficiently search deep neural architectures.
We achieve a $75.1%$ top-1 accuracy on the ImageNet dataset, which is higher than that of state-of-the-art methods using the same search space.
arXiv Detail & Related papers (2020-05-29T09:02:16Z) - A Semi-Supervised Assessor of Neural Architectures [157.76189339451565]
We employ an auto-encoder to discover meaningful representations of neural architectures.
A graph convolutional neural network is introduced to predict the performance of architectures.
arXiv Detail & Related papers (2020-05-14T09:02:33Z) - ADWPNAS: Architecture-Driven Weight Prediction for Neural Architecture
Search [6.458169480971417]
We propose an Architecture-Driven Weight Prediction (ADWP) approach for neural architecture search (NAS)
In our approach, we first design an architecture-intensive search space and then train a HyperNetwork by inputting encoding architecture parameters.
Results show that one search procedure can be completed in 4.0 GPU hours on CIFAR-10.
arXiv Detail & Related papers (2020-03-03T05:06:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.