Feature Selection as Deep Sequential Generative Learning
- URL: http://arxiv.org/abs/2403.03838v1
- Date: Wed, 6 Mar 2024 16:31:56 GMT
- Title: Feature Selection as Deep Sequential Generative Learning
- Authors: Wangyang Ying, Dongjie Wang, Haifeng Chen, Yanjie Fu
- Abstract summary: We develop a deep variational transformer model over a joint of sequential reconstruction, variational, and performance evaluator losses.
Our model can distill feature selection knowledge and learn a continuous embedding space to map feature selection decision sequences into embedding vectors associated with utility scores.
- Score: 50.00973409680637
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Feature selection aims to identify the most pattern-discriminative feature
subset. In prior literature, filter (e.g., backward elimination) and embedded
(e.g., Lasso) methods have hyperparameters (e.g., top-K, score thresholding)
and tie to specific models, thus, hard to generalize; wrapper methods search a
feature subset in a huge discrete space and is computationally costly. To
transform the way of feature selection, we regard a selected feature subset as
a selection decision token sequence and reformulate feature selection as a deep
sequential generative learning task that distills feature knowledge and
generates decision sequences. Our method includes three steps: (1) We develop a
deep variational transformer model over a joint of sequential reconstruction,
variational, and performance evaluator losses. Our model can distill feature
selection knowledge and learn a continuous embedding space to map feature
selection decision sequences into embedding vectors associated with utility
scores. (2) We leverage the trained feature subset utility evaluator as a
gradient provider to guide the identification of the optimal feature subset
embedding;(3) We decode the optimal feature subset embedding to
autoregressively generate the best feature selection decision sequence with
autostop. Extensive experimental results show this generative perspective is
effective and generic, without large discrete search space and expert-specific
hyperparameters.
Related papers
- An incremental preference elicitation-based approach to learning potentially non-monotonic preferences in multi-criteria sorting [53.36437745983783]
We first construct a max-margin optimization-based model to model potentially non-monotonic preferences.
We devise information amount measurement methods and question selection strategies to pinpoint the most informative alternative in each iteration.
Two incremental preference elicitation-based algorithms are developed to learn potentially non-monotonic preferences.
arXiv Detail & Related papers (2024-09-04T14:36:20Z) - Neuro-Symbolic Embedding for Short and Effective Feature Selection via Autoregressive Generation [22.87577374767465]
We reformulate feature selection through a neuro-symbolic lens and introduce a novel generative framework aimed at identifying short and effective feature subsets.
In this framework, we first create a data collector to automatically collect numerous feature selection samples consisting of feature ID tokens, model performance, and the measurement of feature subset redundancy.
Building on the collected data, an encoder-decoder-evaluator learning paradigm is developed to preserve the intelligence of feature selection into a continuous embedding space for efficient search.
arXiv Detail & Related papers (2024-04-26T05:01:08Z) - A Performance-Driven Benchmark for Feature Selection in Tabular Deep
Learning [131.2910403490434]
Data scientists typically collect as many features as possible into their datasets, and even engineer new features from existing ones.
Existing benchmarks for tabular feature selection consider classical downstream models, toy synthetic datasets, or do not evaluate feature selectors on the basis of downstream performance.
We construct a challenging feature selection benchmark evaluated on downstream neural networks including transformers.
We also propose an input-gradient-based analogue of Lasso for neural networks that outperforms classical feature selection methods on challenging problems.
arXiv Detail & Related papers (2023-11-10T05:26:10Z) - Beyond Discrete Selection: Continuous Embedding Space Optimization for
Generative Feature Selection [34.32619834917906]
We reformulate the feature selection problem as a deep differentiable optimization task.
We propose a new principled research perspective: conceptualizing discrete feature subsetting as continuous embedding space.
Specifically, we utilize reinforcement feature selection learning to generate diverse and high-quality training data.
arXiv Detail & Related papers (2023-02-26T03:18:45Z) - Compactness Score: A Fast Filter Method for Unsupervised Feature
Selection [66.84571085643928]
We propose a fast unsupervised feature selection method, named as, Compactness Score (CSUFS) to select desired features.
Our proposed algorithm seems to be more accurate and efficient compared with existing algorithms.
arXiv Detail & Related papers (2022-01-31T13:01:37Z) - Feature Selection Using Reinforcement Learning [0.0]
The space of variables or features that can be used to characterize a particular predictor of interest continues to grow exponentially.
Identifying the most characterizing features that minimizes the variance without jeopardizing the bias of our models is critical to successfully training a machine learning model.
arXiv Detail & Related papers (2021-01-23T09:24:37Z) - Joint Adaptive Graph and Structured Sparsity Regularization for
Unsupervised Feature Selection [6.41804410246642]
We propose a joint adaptive graph and structured sparsity regularization unsupervised feature selection (JASFS) method.
A subset of optimal features will be selected in group, and the number of selected features will be determined automatically.
Experimental results on eight benchmarks demonstrate the effectiveness and efficiency of the proposed method.
arXiv Detail & Related papers (2020-10-09T08:17:04Z) - Infinite Feature Selection: A Graph-based Feature Filtering Approach [78.63188057505012]
We propose a filtering feature selection framework that considers subsets of features as paths in a graph.
Going to infinite allows to constrain the computational complexity of the selection process.
We show that Inf-FS behaves better in almost any situation, that is, when the number of features to keep are fixed a priori.
arXiv Detail & Related papers (2020-06-15T07:20:40Z) - Outlier Detection Ensemble with Embedded Feature Selection [42.8338013000469]
We propose an outlier detection ensemble framework with embedded feature selection (ODEFS)
For each random sub-sampling based learning component, ODEFS unifies feature selection and outlier detection into a pairwise ranking formulation.
We adopt the thresholded self-paced learning to simultaneously optimize feature selection and example selection.
arXiv Detail & Related papers (2020-01-15T13:14:10Z) - Stepwise Model Selection for Sequence Prediction via Deep Kernel
Learning [100.83444258562263]
We propose a novel Bayesian optimization (BO) algorithm to tackle the challenge of model selection in this setting.
In order to solve the resulting multiple black-box function optimization problem jointly and efficiently, we exploit potential correlations among black-box functions.
We are the first to formulate the problem of stepwise model selection (SMS) for sequence prediction, and to design and demonstrate an efficient joint-learning algorithm for this purpose.
arXiv Detail & Related papers (2020-01-12T09:42:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.