論文の概要: Unlocking Dataset Distillation with Diffusion Models
- arxiv url: http://arxiv.org/abs/2403.03881v4
- Date: Wed, 08 Oct 2025 09:38:25 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-09 16:41:19.943935
- Title: Unlocking Dataset Distillation with Diffusion Models
- Title(参考訳): 拡散モデルによるデータセット蒸留のアンロック
- Authors: Brian B. Moser, Federico Raue, Sebastian Palacio, Stanislav Frolov, Andreas Dengel,
- Abstract要約: LD3Mは、事前学習された潜水拡散モデルにより、勾配に基づく蒸留潜水とクラス埋め込みを学習する。
LD3Mは128x128と256x256の複数のImageNetサブセットで、ダウンストリームの精度を4.8ポイント(1 IPC)と4.2ポイント(10 IPC)に改善している。
- 参考スコア(独自算出の注目度): 12.306628722616631
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Dataset distillation seeks to condense datasets into smaller but highly representative synthetic samples. While diffusion models now lead all generative benchmarks, current distillation methods avoid them and rely instead on GANs or autoencoders, or, at best, sampling from a fixed diffusion prior. This trend arises because naive backpropagation through the long denoising chain leads to vanishing gradients, which prevents effective synthetic sample optimization. To address this limitation, we introduce Latent Dataset Distillation with Diffusion Models (LD3M), the first method to learn gradient-based distilled latents and class embeddings end-to-end through a pre-trained latent diffusion model. A linearly decaying skip connection, injected from the initial noisy state into every reverse step, preserves the gradient signal across dozens of timesteps without requiring diffusion weight fine-tuning. Across multiple ImageNet subsets at 128x128 and 256x256, LD3M improves downstream accuracy by up to 4.8 percentage points (1 IPC) and 4.2 points (10 IPC) over the prior state-of-the-art. The code for LD3M is provided at https://github.com/Brian-Moser/prune_and_distill.
- Abstract(参考訳): データセットの蒸留は、データセットをより小さいが非常に代表的な合成サンプルに凝縮させようとする。
拡散モデルは今や全ての生成的ベンチマークを導いているが、現在の蒸留法はそれらを回避し、代わりにGANやオートエンコーダに依存する。
この傾向は、長い縮退鎖を経由した単純なバックプロパゲーションが勾配を消失させ、効率的な合成サンプル最適化を妨げているためである。
この制限に対処するために、勾配式蒸留塔とクラス埋め込みを学習する最初の方法であるLD3M(Latent Dataset Distillation with Diffusion Models)を導入する。
線形減衰するスキップ接続は、初期ノイズ状態から逆ステップ毎に注入され、拡散重量微調整を必要とせず、数十のタイムステップにわたる勾配信号を保持する。
LD3Mは128x128と256x256の複数のImageNetサブセットで、ダウンストリームの精度を4.8ポイント(1 IPC)と4.2ポイント(10 IPC)に改善している。
LD3Mのコードはhttps://github.com/Brian-Moser/prune_and_distillにある。
関連論文リスト
- MGD$^3$: Mode-Guided Dataset Distillation using Diffusion Models [50.2406741245418]
本稿では,事前学習した拡散モデルを利用したモード誘導拡散モデルを提案する。
提案手法は,異なるデータモードを識別するモード発見,クラス内多様性を高めるモード誘導,および合成試料中のアーティファクトを緩和するモード誘導という3段階のデータセットの多様性に対処する。
本手法は, 蒸留損失を伴う微調整拡散モデルの必要性を排除し, 計算コストを大幅に削減する。
論文 参考訳(メタデータ) (2025-05-25T03:40:23Z) - Taming Diffusion for Dataset Distillation with High Representativeness [49.3818035378669]
D3HRは、高い代表性を持つ蒸留データセットを生成する新しい拡散ベースのフレームワークである。
我々の実験は、D3HRが異なるモデルアーキテクチャにわたって高い精度を達成できることを実証した。
論文 参考訳(メタデータ) (2025-05-23T22:05:59Z) - Data-to-Model Distillation: Data-Efficient Learning Framework [14.44010988811002]
本稿では,データ・ツー・モデル蒸留(Data-to-Model Distillation, D2M)と呼ばれる新しいフレームワークを提案する。
提案手法は,高解像度の128x128 ImageNet-1Kまで効果的にスケールアップする。
論文 参考訳(メタデータ) (2024-11-19T20:10:28Z) - One Step Diffusion-based Super-Resolution with Time-Aware Distillation [60.262651082672235]
拡散に基づく画像超解像(SR)法は,低解像度画像から細部まで細部まで,高解像度画像の再構成に有望であることを示す。
近年,拡散型SRモデルの知識蒸留によるサンプリング効率の向上が試みられている。
我々は,効率的な画像超解像を実現するため,TAD-SRというタイムアウェア拡散蒸留法を提案する。
論文 参考訳(メタデータ) (2024-08-14T11:47:22Z) - One Category One Prompt: Dataset Distillation using Diffusion Models [22.512552596310176]
本稿では,D3M(Diffusion Models)をデータセット蒸留の新たなパラダイムとして導入し,生成的テキスト・画像基盤モデルの最近の進歩を活用する。
提案手法では,テキストから画像への合成モデルを微調整する手法であるテキストインバージョンを用いて,大規模データセットの簡潔かつ情報的な表現を生成する。
論文 参考訳(メタデータ) (2024-03-11T20:23:59Z) - Importance-Aware Adaptive Dataset Distillation [53.79746115426363]
ディープラーニングモデルの開発は、大規模データセットの可用性によって実現されている。
データセットの蒸留は、大きな元のデータセットから必須情報を保持するコンパクトなデータセットを合成することを目的としている。
本稿では, 蒸留性能を向上する重要適応型データセット蒸留(IADD)法を提案する。
論文 参考訳(メタデータ) (2024-01-29T03:29:39Z) - Data Distillation Can Be Like Vodka: Distilling More Times For Better
Quality [78.6359306550245]
蒸留に1つの合成部分集合を用いるだけでは最適な一般化性能は得られない。
PDDは複数の小さな合成画像集合を合成し、それぞれ前の集合に条件付けし、これらの部分集合の累積和でモデルを訓練する。
実験の結果, PDDは既存のデータセット蒸留法の性能を最大4.3%向上させることができることがわかった。
論文 参考訳(メタデータ) (2023-10-10T20:04:44Z) - Distill Gold from Massive Ores: Bi-level Data Pruning towards Efficient Dataset Distillation [96.92250565207017]
本研究では,データセット蒸留作業におけるデータ効率と選択について検討する。
蒸留の力学を再現することにより、実際のデータセットに固有の冗長性についての洞察を提供する。
蒸留における因果関係から最も寄与した試料を見出した。
論文 参考訳(メタデータ) (2023-05-28T06:53:41Z) - Generalizing Dataset Distillation via Deep Generative Prior [75.9031209877651]
本稿では,データセット全体の知識をいくつかの合成画像に抽出することを提案する。
このアイデアは、学習アルゴリズムにトレーニングデータとして与えられる少数の合成データポイントを合成し、結果として元のデータに基づいてトレーニングされたデータを近似するモデルを構築する。
生成モデルの潜在空間における複数の中間特徴ベクトルに多数の画像を蒸留する新しい最適化アルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-05-02T17:59:31Z) - DiM: Distilling Dataset into Generative Model [42.32433831074992]
そこで我々は,大列車のtextbfinto 生成textbfModels の textbfDistill 情報に対する新しい蒸留手法を提案する。
蒸留段階では,実画像と生成画像のモデルプールによって予測されるロジットの差を最小限に抑える。
展開段階では、生成モデルはハエのランダムノイズから様々なトレーニングサンプルを合成する。
論文 参考訳(メタデータ) (2023-03-08T16:48:24Z) - Minimizing the Accumulated Trajectory Error to Improve Dataset
Distillation [151.70234052015948]
本稿では,フラットな軌道を求める最適化アルゴリズムを提案する。
合成データに基づいてトレーニングされた重みは、平坦な軌道への正規化を伴う累積誤差摂動に対して頑健であることを示す。
本手法はFTD (Flat Trajectory Distillation) と呼ばれ, 勾配整合法の性能を最大4.7%向上させる。
論文 参考訳(メタデータ) (2022-11-20T15:49:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。