論文の概要: FedClust: Optimizing Federated Learning on Non-IID Data through
Weight-Driven Client Clustering
- arxiv url: http://arxiv.org/abs/2403.04144v1
- Date: Thu, 7 Mar 2024 01:50:36 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-08 15:34:56.192631
- Title: FedClust: Optimizing Federated Learning on Non-IID Data through
Weight-Driven Client Clustering
- Title(参考訳): FedClust: 軽量クライアントクラスタリングによる非IIDデータによるフェデレーション学習の最適化
- Authors: Md Sirajul Islam, Simin Javaherian, Fei Xu, Xu Yuan, Li Chen,
Nian-Feng Tzeng
- Abstract要約: Federated Learning(FL)は、分散型デバイス上で、ローカルデータを公開せずにコラボレーティブなモデルトレーニングを可能にする、新興の分散機械学習パラダイムである。
本稿では,局所モデル重みとクライアントデータ分布の相関を利用した新しいCFL手法であるFedClustを提案する。
- 参考スコア(独自算出の注目度): 28.057411252785176
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Federated learning (FL) is an emerging distributed machine learning paradigm
enabling collaborative model training on decentralized devices without exposing
their local data. A key challenge in FL is the uneven data distribution across
client devices, violating the well-known assumption of
independent-and-identically-distributed (IID) training samples in conventional
machine learning. Clustered federated learning (CFL) addresses this challenge
by grouping clients based on the similarity of their data distributions.
However, existing CFL approaches require a large number of communication rounds
for stable cluster formation and rely on a predefined number of clusters, thus
limiting their flexibility and adaptability. This paper proposes FedClust, a
novel CFL approach leveraging correlations between local model weights and
client data distributions. FedClust groups clients into clusters in a one-shot
manner using strategically selected partial model weights and dynamically
accommodates newcomers in real-time. Experimental results demonstrate FedClust
outperforms baseline approaches in terms of accuracy and communication costs.
- Abstract(参考訳): Federated Learning(FL)は、分散型デバイス上で、ローカルデータを公開せずにコラボレーティブなモデルトレーニングを可能にする、新興の分散機械学習パラダイムである。
flの鍵となる課題は、クライアントデバイス間の不均一なデータ分散であり、従来の機械学習における独立および分散(iid)トレーニングサンプルの周知の前提に違反している。
CFL(Clustered Federated Learning)は、データ分散の類似性に基づいてクライアントをグループ化する。
しかし、既存のCFLアプローチでは、安定したクラスタ形成のために多数の通信ラウンドを必要とし、予め定義された数のクラスタに依存しているため、柔軟性と適応性が制限される。
本稿では,局所モデル重みとクライアントデータ分布の相関を利用した新しいCFL手法であるFedClustを提案する。
fedclustは、戦略的に選択された部分モデル重みを使って、クライアントをワンショットでクラスタにグループ化し、リアルタイムに新参者を動的に適応させる。
実験によりFedClustは精度と通信コストの点でベースラインのアプローチより優れていた。
関連論文リスト
- FedSPD: A Soft-clustering Approach for Personalized Decentralized Federated Learning [18.38030098837294]
フェデレーション学習は、分散クライアントがローカルデータを使用して機械学習モデルを協調的にトレーニングするためのフレームワークである。
分散環境のための効率的パーソナライズされたフェデレーション学習アルゴリズムであるFedSPDを提案する。
低接続性ネットワークにおいてもFedSPDが正確なモデルを学ぶことを示す。
論文 参考訳(メタデータ) (2024-10-24T15:48:34Z) - A Bayesian Framework for Clustered Federated Learning [14.426129993432193]
連邦学習(FL)の主な課題の1つは、非独立で同一に分散された(非IID)クライアントデータを扱うことである。
本稿では、クライアントをクラスタに関連付けるクラスタ化FLのための統一ベイズフレームワークを提案する。
この作業は、クライアントとクラスタの関連に関する洞察を提供し、新しい方法でクライアントの知識共有を可能にする。
論文 参考訳(メタデータ) (2024-10-20T19:11:24Z) - FedClust: Tackling Data Heterogeneity in Federated Learning through Weight-Driven Client Clustering [26.478852701376294]
フェデレートラーニング(Federated Learning, FL)は、分散機械学習のパラダイムである。
FLの主な課題の1つは、クライアントデバイスにまたがる不均一なデータ分散の存在である。
我々は,局所モデル重みとクライアントのデータ分布の相関を利用したCFLの新しい手法であるFedClustを提案する。
論文 参考訳(メタデータ) (2024-07-09T02:47:16Z) - An Aggregation-Free Federated Learning for Tackling Data Heterogeneity [50.44021981013037]
フェデレートラーニング(FL)は、分散データセットからの知識を活用する効果に頼っている。
従来のFLメソッドでは、クライアントが前回のトレーニングラウンドからサーバが集約したグローバルモデルに基づいてローカルモデルを更新するアグリゲート-then-adaptフレームワークを採用している。
我々は,新しいアグリゲーションフリーFLアルゴリズムであるFedAFを紹介する。
論文 参考訳(メタデータ) (2024-04-29T05:55:23Z) - Contrastive encoder pre-training-based clustered federated learning for
heterogeneous data [17.580390632874046]
フェデレートラーニング(FL)は、分散クライアントがデータのプライバシを保持しながら、グローバルモデルを協調的にトレーニングすることを可能にする。
本稿では,モデル収束とFLシステム全体の性能を改善するために,CP-CFL(Contrative Pre-training-based Clustered Federated Learning)を提案する。
論文 参考訳(メタデータ) (2023-11-28T05:44:26Z) - PFL-GAN: When Client Heterogeneity Meets Generative Models in
Personalized Federated Learning [55.930403371398114]
パーソナライズドラーニング(PFL)のための新しいGAN(Generative Adversarial Network)の共有と集約戦略を提案する。
PFL-GANは、異なるシナリオにおけるクライアントの不均一性に対処する。より具体的には、まずクライアント間の類似性を学び、次に重み付けされた協調データアグリゲーションを開発する。
いくつかのよく知られたデータセットに対する厳密な実験による実験結果は、PFL-GANの有効性を示している。
論文 参考訳(メタデータ) (2023-08-23T22:38:35Z) - Towards Instance-adaptive Inference for Federated Learning [80.38701896056828]
Federated Learning(FL)は、複数のクライアントがローカルトレーニングを集約することで、強力なグローバルモデルを学ぶことができる分散学習パラダイムである。
本稿では,FedInsという新しいFLアルゴリズムを提案する。
我々のFedInsは、Tiny-ImageNet上での通信コストが15%未満で、トップパフォーマンスの手法に対して6.64%の改善など、最先端のFLアルゴリズムよりも優れていることを示す。
論文 参考訳(メタデータ) (2023-08-11T09:58:47Z) - Stochastic Clustered Federated Learning [21.811496586350653]
本稿では,一般の非IID問題に対する新しいクラスタ化フェデレーション学習手法であるStoCFLを提案する。
詳細は、StoCFLは、任意の割合のクライアント参加と新しく加入したクライアントをサポートする柔軟なCFLフレームワークを実装しています。
その結果,StoCFLはクラスタ数の不明な場合でも,有望なクラスタ結果が得られることがわかった。
論文 参考訳(メタデータ) (2023-03-02T01:39:16Z) - Fed-CBS: A Heterogeneity-Aware Client Sampling Mechanism for Federated
Learning via Class-Imbalance Reduction [76.26710990597498]
本研究では,ランダムに選択したクライアントからのグループデータのクラス不均衡が,性能の大幅な低下につながることを示す。
我々のキーとなる観測に基づいて、我々は効率的なクライアントサンプリング機構、すなわちフェデレートクラスバランスサンプリング(Fed-CBS)を設計する。
特に、クラス不均衡の尺度を提案し、その後、同型暗号化を用いてプライバシー保護方式でこの尺度を導出する。
論文 参考訳(メタデータ) (2022-09-30T05:42:56Z) - Efficient Distribution Similarity Identification in Clustered Federated
Learning via Principal Angles Between Client Data Subspaces [59.33965805898736]
クラスタ学習は、クライアントをクラスタにグループ化することで、有望な結果をもたらすことが示されている。
既存のFLアルゴリズムは基本的に、クライアントを同様のディストリビューションでグループ化しようとしている。
以前のFLアルゴリズムは、訓練中に間接的に類似性を試みていた。
論文 参考訳(メタデータ) (2022-09-21T17:37:54Z) - Blockchain Assisted Decentralized Federated Learning (BLADE-FL):
Performance Analysis and Resource Allocation [119.19061102064497]
ブロックチェーンをFL、すなわちブロックチェーン支援分散学習(BLADE-FL)に統合することで、分散FLフレームワークを提案する。
提案されたBLADE-FLのラウンドでは、各クライアントはトレーニング済みモデルを他のクライアントにブロードキャストし、受信したモデルに基づいてブロックを生成し、次のラウンドのローカルトレーニングの前に生成されたブロックからモデルを集約します。
遅延クライアントがblade-flの学習性能に与える影響を調査し,最適なk,学習パラメータ,遅延クライアントの割合の関係を特徴付ける。
論文 参考訳(メタデータ) (2021-01-18T07:19:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。